分析 (I)設(shè)等差數(shù)列{an}的公差為d,由a3=7,a5+a7=26,可得a1+2d=7,2a1+10d=26,解得a1,d.即可得出.
(Ⅱ)由(I)可得:Sn=$\frac{n(3+2n+1)}{2}$=n2+2n.bn=$\frac{1}{{S}_{n}}$=$\frac{1}{n(n+2)}$=$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$,再利用“裂項求和”即可得出.
解答 解:(I)設(shè)等差數(shù)列{an}的公差為d,∵a3=7,a5+a7=26,
∴a1+2d=7,2a1+10d=26,解得a1=3,d=2.
∴an=3+2(n-1)=2n+1.
(Ⅱ)由(I)可得:Sn=$\frac{n(3+2n+1)}{2}$=n2+2n.
bn=$\frac{1}{{S}_{n}}$=$\frac{1}{n(n+2)}$=$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$,
∴數(shù)列{bn}的前n項和Tn=$\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{2}-\frac{1}{4})$+$(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{n-1}-\frac{1}{n+1})$+$(\frac{1}{n}-\frac{1}{n+2})]$
=$\frac{1}{2}(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})$
=$\frac{3}{4}$-$\frac{2n+3}{2(n+1)(n+2)}$.
點評 本題考查了等差數(shù)列的通項公式與求和公式、“裂項求和”方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 20 | B. | 22 | C. | 24 | D. | 36 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1<a<2 | B. | 1≤a≤2 | C. | 1<a<3 | D. | 1≤a≤3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com