10.用長(zhǎng)為50m的籬笆圍成一個(gè)一邊靠墻的矩形菜園,問(wèn)這個(gè)矩形的長(zhǎng)、寬各為多少時(shí),菜園的面積最大?最大值是多少?

分析 由題意設(shè)矩形的長(zhǎng)為xm,寬為$\frac{50-x}{2}$m,則可得S=x•$\frac{50-x}{2}$≤$\frac{1}{2}•$($\frac{x+50-x}{2}$)2,即可用利用基本不等式求解的菜園的面積及其取得面積最大值時(shí)的長(zhǎng)和寬的值.

解答 解:設(shè)矩形的長(zhǎng)為xm,寬為$\frac{50-x}{2}$m,(0<x<50)
則S=x•$\frac{50-x}{2}$≤$\frac{1}{2}•$($\frac{x+50-x}{2}$)2(當(dāng)且僅當(dāng)x=50-x,即x=25時(shí),等號(hào)成立)
故:這個(gè)矩形的長(zhǎng)為25m,寬為12.5m時(shí),菜園的面積最大,最大值是312.5m2

點(diǎn)評(píng) 本題考查了實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題的能力及基本不等式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.設(shè)a,b∈R,滿(mǎn)足3a-b+ab=4,則|3a+b-3|的最小值是2$\sqrt{3}$-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.定義Max{a,b}=$\left\{\begin{array}{l}a(a≥b)\\ b(a<b)\end{array}$設(shè)實(shí)數(shù)x,y滿(mǎn)足約束條件:$\left\{\begin{array}{l}|x|≤2\\|y|≤2\end{array}$,z=Max{4x+y,3x-y},則z的取值范圍為( 。
A.-7≤z≤8B.-7≤z≤10C.8≤z≤10D.0≤z≤10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)滿(mǎn)足f(x+1)=lg(2+x)-lg(-x).
(1)求函數(shù)f(x)的解析式及定義域;
(2)解不等式f(x)<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列說(shuō)法正確的是(  )
A.a∈R,“$\frac{1}{a}$<1”是“a>1”的必要不充分條件
B.“p∧q為真命題”是“p∨q為真命題”的必要不充分條件
C.命題“?x∈R使得x2+2x+3<0”的否定是:“?x∈R,x2+2x+3>0”
D.命題p:“?x∈R,sinx+cosx≤$\sqrt{2}$”,則¬p是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知向量$\overrightarrow a,\overrightarrow b$滿(mǎn)足$\overrightarrow a$•($\overrightarrow b$+$\overrightarrow a$)=2,且|${\overrightarrow a}$|=1,|${\overrightarrow b}$|=2,則$\overrightarrow a$與$\overrightarrow b$的夾角為(  )
A.$\frac{π}{6}$B.$\frac{π}{5}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知圓C的圓心C(1,2),且圓C與x軸相切,過(guò)原點(diǎn)O的直線(xiàn)與圓C相交于P、Q兩點(diǎn),則$\overrightarrow{OP}$$•\overrightarrow{OQ}$的值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過(guò)點(diǎn)M(1,$\frac{3}{2}$),且左焦點(diǎn)為F1(-1,0).
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)橢圓C的左右頂點(diǎn)分別為A、B,P為橢圓C上一動(dòng)點(diǎn),PA,PB分別交直線(xiàn)x=4于點(diǎn)D、E.
(1)求D、E兩點(diǎn)縱坐標(biāo)的乘積;
(2)若點(diǎn)N($\frac{3}{2}$,0),試判斷點(diǎn)N與以DE為直徑的圓的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)點(diǎn)A1(-$\sqrt{2}$,0)和點(diǎn)A2($\sqrt{2}$,0),直線(xiàn)A1M、A2M相交于點(diǎn)M,且它們的斜率之積是-$\frac{1}{2}$.設(shè)M的軌跡為C,過(guò)點(diǎn)F(1,0)作直線(xiàn)l交C于P、Q兩點(diǎn).
(1)求點(diǎn)M的軌跡方程;
(2)求|PQ|的最小值;
(3)是否存在點(diǎn)N,使得以線(xiàn)段PQ為直徑的圓過(guò)該定點(diǎn),若存在,求出定點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案