11.若不等式x2+mx-m>0,的解集為R,則實數(shù)m的取值范圍是( 。
A.m<-4或m>0B.m<0或m>4C.-4<m<0D.0<m<4

分析 不等式x2+mx-m>0的解集為R,需△<0,解出即可

解答 解:∵x2+mx-m>0的解集為R,
∴△=m2+4m<0,
解得:-4<m<0
故選:C.

點評 本題考查函數(shù)恒成立問題、一元二次不等式的解法,考查轉(zhuǎn)化思想、考查學生解決問題的能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

1.已知集合A={x|-2≤x≤7},B={x|m+1≤x≤2m-1},若A∪B=A,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的最小正周期是π,若其圖象向右平移$\frac{π}{6}$個單位,得到的函數(shù)為偶函數(shù),則函數(shù)f(x)的圖象(  )
A.關(guān)于直線x=$\frac{5π}{12}$對稱B.關(guān)于點($\frac{7π}{12}$,0)對稱
C.關(guān)于點($\frac{5π}{12}$,0)對稱D.關(guān)于直線x=$\frac{π}{12}$對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.集合A={x|(x-1)(x-2)=0},A∪B={1,2},則滿足條件的集合B有( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知$\overrightarrow{a}$=(2x,-1),$\overrightarrow$=(-4,2),若$\overrightarrow{a}$$∥\overrightarrow$,則x的值為( 。
A.$\frac{1}{4}$B.-$\frac{1}{4}$C.1D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知拋物線C1:y2=4x的焦點F也是橢圓C2:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個焦點,C1與C2的公共弦長為$\frac{4\sqrt{6}}{3}$.
(Ⅰ)求橢圓C2的方程;
(Ⅱ)過橢圓C2的右焦點F作斜率為k(k≠0)的直線l與橢圓C2相交于A,B兩點,線段AB的中點為P,過點P做垂直于AB的直線交x軸于點D,試求$\frac{|DP|}{|AB|}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.若多項式${x^3}+{x^{10}}={a_0}+{a_1}({x+1})+…+{a_9}{({x+1})^9}+{a_{10}}{({x+1})^{10}}$,則a9=-10.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.若函數(shù)$f(x)=\left\{{\begin{array}{l}\begin{array}{l}{x^2}+2x-5,x>0\\ a,x=0\end{array}\\{g(x),\;\;x<0\;\;\;\;\;\;\;\;}\end{array}}\right.$為奇函數(shù),則a=0,f(g(-1))=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知sinα-cosα=-$\frac{\sqrt{5}}{2}$,則tanα+$\frac{1}{tanα}$的值為-8.

查看答案和解析>>

同步練習冊答案