【題目】已知橢圓過(guò)點(diǎn) ,兩個(gè)焦點(diǎn)為,0),,0).

(1)求橢圓的方程;

(2)求以點(diǎn) 為中點(diǎn)的弦所在的直線方程,并求此時(shí)的面積.

【答案】(1) (2)直線的方程為

【解析】

(1)由橢圓C兩個(gè)焦點(diǎn)的坐標(biāo)分別是,并且經(jīng)過(guò)點(diǎn),列出方程組,求出,由此求出橢圓C的標(biāo)準(zhǔn)方程;

(2)設(shè),由恰是弦AB的中點(diǎn),得,把代入橢圓,利用點(diǎn)差法能求出弦AB所在直線斜率,從而求得直線的方程,進(jìn)一步求得三角形的面積.

(1)因?yàn)闄E圓C的兩個(gè)焦點(diǎn)的坐標(biāo)分別是,

并且經(jīng)過(guò)點(diǎn)

所以,

解得,

所以橢圓C的標(biāo)準(zhǔn)方程為

(2)設(shè),

因?yàn)檫^(guò)橢圓C內(nèi)一點(diǎn)做一條直線交橢圓于A,B兩點(diǎn),

點(diǎn)M恰為弦AB的中點(diǎn),所以,

代入橢圓,得:

,兩式相減得,

所以,

所以弦AB所在的直線方程為:,即;

,可得,

由弦長(zhǎng)公式可求得

點(diǎn)O到直線的距離為,

由三角形面積公式可求得.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2020年春節(jié)前后,一場(chǎng)突如其來(lái)的新冠肺炎疫情在全國(guó)蔓延.疫情就是命令,防控就是責(zé)任.在黨中央的堅(jiān)強(qiáng)領(lǐng)導(dǎo)和統(tǒng)一指揮下,全國(guó)人民眾志成城、團(tuán)結(jié)一心,掀起了一場(chǎng)堅(jiān)決打贏疫情防控阻擊戰(zhàn)的人民戰(zhàn)爭(zhēng).下圖表展示了214日至29日全國(guó)新冠肺炎疫情變化情況,根據(jù)該折線圖,下列結(jié)論正確的是(

A.16天中每日新增確診病例數(shù)量呈下降趨勢(shì)且19日的降幅最大

B.16天中每日新增確診病例的中位數(shù)小于新增疑似病例的中位數(shù)

C.16天中新增確診、新增疑似、新增治愈病例的極差均大于2000

D.19日至29日每日新增治愈病例數(shù)量均大于新增確診與新增疑似病例之和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),是兩條不重合的直線,,是兩個(gè)不重合的平面,下列說(shuō)法正確的是( )

A. ,,則

B. ,,則

C. ,,則

D. ,,,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】心理學(xué)家發(fā)現(xiàn)視覺(jué)和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗(yàn)證這個(gè)結(jié)論,從興趣小組中按分層抽樣的方法抽取50名同學(xué),給所有同學(xué)幾何和代數(shù)各一題,讓各位同學(xué)自由選擇一道題進(jìn)行解答,統(tǒng)計(jì)情況如下表:(單位:人)

幾何題

代數(shù)題

總計(jì)

男 同學(xué)

22

8

30

女同學(xué)

8

12

20

總計(jì)

30

20

50

(1)能否據(jù)此判斷有97.5%的把握認(rèn)為視覺(jué)和空間能力與性別有關(guān)?

(2)現(xiàn)從選擇幾何題的8名女生中任意抽取兩人對(duì)他們的答題進(jìn)行研究,記甲、乙兩名女生被抽到的人數(shù)為的分布列及數(shù)學(xué)期望.

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知甲、乙兩名工人在同樣條件下每天各生產(chǎn)100件產(chǎn)品,且每生產(chǎn)1件正品可獲利20元,生產(chǎn)1件次品損失30元,甲,乙兩名工人100天中出現(xiàn)次品件數(shù)的情況如表所示.

甲每天生產(chǎn)的次品數(shù)/件

0

1

2

3

4

對(duì)應(yīng)的天數(shù)/天

40

20

20

10

10

乙每天生產(chǎn)的次品數(shù)/件

0

1

2

3

對(duì)應(yīng)的天數(shù)/天

30

25

25

20

(1)將甲每天生產(chǎn)的次品數(shù)記為(單位:件),日利潤(rùn)記為(單位:元),寫(xiě)出的函數(shù)關(guān)系式;

(2)如果將統(tǒng)計(jì)的100天中產(chǎn)生次品量的頻率作為概率,記表示甲、乙兩名工人1天中各自日利潤(rùn)不少于1950元的人數(shù)之和,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)直線與函數(shù)的圖像恰有兩個(gè)不同的公共點(diǎn).求出所有這樣的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面為直角梯形,,,平面底面,,.

(Ⅰ)判斷平面與平面是否垂直,并給出證明;

(Ⅱ)若,,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》中,將四個(gè)面都為直角三角形的四面體稱為鱉臑,如圖,在鱉臑中,平面,,且,過(guò)點(diǎn)分別作于點(diǎn)于點(diǎn),連接,則三棱錐的體積的最大值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)是橢圓C上的一點(diǎn),橢圓C的離心率與雙曲線的離心率互為倒數(shù),斜率為直線l交橢圓CB,D兩點(diǎn),且A、B、D三點(diǎn)互不重合.

1)求橢圓C的方程;

2)若分別為直線ABAD的斜率,求證:為定值。

查看答案和解析>>

同步練習(xí)冊(cè)答案