【題目】《九章算術(shù)》中,將四個面都為直角三角形的四面體稱為鱉臑,如圖,在鱉臑中,平面,,且,過點分別作于點,于點,連接,則三棱錐的體積的最大值為__________.
【答案】
【解析】
由已知可得△AEF、△PEF均為直角三角形,且AF=2,由基本不等式可得當AE=EF=2時,△AEF的面積最大,然后由棱錐體積公式可求得體積最大值.
由PA⊥平面ABC,得PA⊥BC,
又AB⊥BC,且PA∩AB=A,∴BC⊥平面PAB,則BC⊥AE,
又PB⊥AE,則AE⊥平面PBC,
于是AE⊥EF,且AE⊥PC,結(jié)合條件AF⊥PC,得PC⊥平面AEF,
∴△AEF、△PEF均為直角三角形,由已知得AF=2,
而S△AEF=(AE2+EF2)=AF2=2,
當且僅當AE=EF=2時,取“=”,此時△AEF的面積最大,
三棱錐P﹣AEF的體積的最大值為:
VP﹣AEF===.
故答案為:
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=(3-x)ex,g(x)=x+a(a∈R)(e是自然對數(shù)的底數(shù),e≈2.718…).
(1)求函數(shù)f(x)的極值;
(2)若函數(shù)y=f(x)g(x)在區(qū)間[1,2]上單調(diào)遞增,求實數(shù)a的取值范圍;
(3)若函數(shù)h(x)=在區(qū)間(0,+∞)上既存在極大值又存在極小值,并且函數(shù)h(x)的極大值小于整數(shù)b,求b的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某單位組織“學習強國”知識競賽,選手從6道備選題中隨機抽取3道題.規(guī)定至少答對其中的2道題才能晉級.甲選手只能答對其中的4道題。
(1)求甲選手能晉級的概率;
(2)若乙選手每題能答對的概率都是,且每題答對與否互不影響,用數(shù)學期望分析比較甲、乙兩選手的答題水平。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知直線:(為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的直角坐標方程;
(2)設點的直角坐標為,直線與曲線的交點為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底數(shù)),是的導函數(shù).
(Ⅰ)當時,求證;
(Ⅱ)是否存在正整數(shù),使得對一切恒成立?若存在,求出的最大值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2018年全國數(shù)學奧賽試行改革:在高二一年中舉行5次全區(qū)競賽,學生如果其中2次成績達全區(qū)前20名即可進入省隊培訓,不用參加其余的競賽,而每個學生最多也只能參加5次競賽.規(guī)定:若前4次競賽成績都沒有達全區(qū)前20名,則第5次不能參加競賽.假設某學生每次成績達全區(qū)前20名的概率都是,每次競賽成績達全區(qū)前20名與否互相獨立.
(1)求該學生進入省隊的概率.
(2)如果該學生進入省隊或參加完5次競賽就結(jié)束,記該學生參加競賽的次數(shù)為,求的分布列及的數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】三角形面積為,,,為三角形三邊長,為三角形內(nèi)切圓半徑,利用類比推理,可以得出四面體的體積為( )
A.
B.
C. (為四面體的高)
D. (其中,,,分別為四面體四個面的面積,為四面體內(nèi)切球的半徑,設四面體的內(nèi)切球的球心為,則球心到四個面的距離都是)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,左頂點為,過橢圓的右焦點作互相垂直的兩條直線和,分別交直線于,兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)求的面積的最小值;
(Ⅲ)設直線與橢圓的另一個交點為,橢圓的右頂點為,求證:,,三點共線.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com