(14分)在平面直角坐標系xOy中,已知圓C1:(x+3)2+(y-1)2=4和圓C2:(x
-4)2+(y-5)2=4.
(1)若點M∈⊙ C1,  點N∈⊙C2,求|MN|的取值范圍;
(2)若直線l過點A(4,0),且被圓C1截得的弦長為2 ,求直線l的方程;
(3)設(shè)P為平面上的點,滿足:存在過點P的無數(shù)多對互相垂直的直線l1和l2,它們分別與圓C1和圓C2相交,且直線l1被圓C1截得的弦長與直線l2被圓C2截得的弦長相等,試求所有滿足條件的點P的坐標。

解:(1)

(2)由于直線x=4與圓C1沒有交點,則直線l的斜率存在,設(shè)直線l的方程為:y=k(x-
所求直線方程為y=0,或7x+24y-28=0.
(3)設(shè)點P(a,b)滿足條件,設(shè)直線l1的方程為y-b=k(x-a),即kx-y+b-ak=0,k≠0,
則直線l2的方程為y-b=-(x-a),即x+ky-a-kb=0.根據(jù)已知條件得

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知圓C的方程為x2+y2=4.
(1)求過點P(1,2)且與圓C相切的直線l的方程;
(2)直線l過點P(1,2),且與圓C交于A、B兩點,若|AB|=2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)已知圓經(jīng)過、兩點,且圓心在直線上.
(Ⅰ)求圓的方程;
(Ⅱ)若直線經(jīng)過點且與圓相切,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(14分)已知圓M過定點,圓心M在二次曲線上運動(1)若圓M與y軸相切,求圓M方程;(2) 已知圓M的圓心M在第一象限, 半徑為,動點是圓M外一點,過點與圓M相切的切線的長為3,求動點的軌跡方程;(3)若圓M與x軸交于A,B兩點,設(shè),求的取值范圍?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)已知定點A(4,0)和圓x2+y2=4上的動點B,點P分AB之
比為2∶1,求點P的軌跡方程

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓x2+y2-4ax+2ay+20(a-1)=0.
(1)求證對任意實數(shù)a,該圓恒過一定點;
(2)若該圓與圓x2+y2=4相切,求a的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
在一個直徑是50的球形器材中,嵌入一根圓軸(如圖5-5),為了使圓軸不易脫出,應(yīng)該使它與球有最大的接觸面積,問圓軸的半徑x應(yīng)是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知拋物線C:的焦點為,(,)是C上一點,=,則=(   )

A.1B.2C.4 D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分)已知圓的圓心在軸的正半軸上,且圓與圓 相外切,又和直線相切,求圓的方程。

查看答案和解析>>

同步練習冊答案