【題目】已知數(shù)列滿足奇數(shù)項(xiàng)成等差,公差為,偶數(shù)項(xiàng)成等比,公比為,且數(shù)列的前項(xiàng)和為,,.

,.

①求數(shù)列的通項(xiàng)公式;

②若,求正整數(shù)的值;

,,對(duì)任意給定的,是否存在實(shí)數(shù),使得對(duì)任意恒成立?若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

【答案】,;②;存在;的取值范圍為.

【解析】

先由,聯(lián)立求得,;①先對(duì)進(jìn)行分類(正奇數(shù)與正偶數(shù)),分別求通項(xiàng)公式;②先對(duì)進(jìn)行分類(正奇數(shù)與正偶數(shù)),利用①求得的通項(xiàng)公式分別求滿足題意的,再綜合;

分當(dāng)兩種情況分別研究,求出的取值范圍.

解:①因?yàn)?/span>,所以,即解得,.

當(dāng)為奇數(shù)時(shí),設(shè),則

當(dāng)為偶數(shù)時(shí),設(shè),則

綜上.

②當(dāng)為奇數(shù)時(shí),,即,即,當(dāng)時(shí),不合題意;

當(dāng)時(shí),右邊小于2,左邊大于2,等式不成立;

當(dāng)為偶數(shù)時(shí),,,所以.綜上,.

當(dāng)時(shí),由于,各項(xiàng),所以,所以符合題意;

當(dāng)時(shí),假設(shè)對(duì)任意恒成立,即對(duì)任意恒成立,

所以,令,即對(duì)任意恒成立

先證:對(duì)任意恒成立,

,則,

所以上遞減,在上遞增,

所以,即對(duì)任意恒成立,所以,

所以,所以當(dāng)時(shí),,

,解得

所以當(dāng)時(shí),這與對(duì)任意恒成立矛盾,所以當(dāng)時(shí)不合題意;

綜上的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=lnxsinx+axa0).

1)若a1,求證:當(dāng)x1)時(shí),fx)<2x1

2)若fx)在(0,2π)上有且僅有1個(gè)極值點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,圖中直棱柱的底面是菱形,其中.又點(diǎn)分別在棱上運(yùn)動(dòng),且滿足:,.

1)求證:四點(diǎn)共面,并證明∥平面.

2)是否存在點(diǎn)使得二面角的余弦值為?如果存在,求出的長(zhǎng);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線與拋物線交于、兩點(diǎn),是坐標(biāo)原點(diǎn),.

1)求線段中點(diǎn)的軌跡的方程;

2)設(shè)直線與曲線交于兩點(diǎn),,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中,,為自然對(duì)數(shù)的底數(shù).

,,①若函數(shù)單調(diào)遞增,求實(shí)數(shù)的取值范圍;②若對(duì)任意,恒成立,求實(shí)數(shù)的取值范圍.

,且存在兩個(gè)極值點(diǎn),,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)雙曲線C1a0b0)右焦點(diǎn)F2作雙曲線一條漸近線的垂線,垂足為P,與雙曲線交于點(diǎn)A,若 ,則雙曲線C的漸近線方程為(

A.y=±xB.y=±xC.y=±2xD.y=±x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)在區(qū)間上存在零點(diǎn),則實(shí)數(shù)的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

1)若a0時(shí),求函數(shù)的單調(diào)遞增區(qū)間;

2)若函數(shù)x1時(shí)取極大值,求實(shí)數(shù)a的取值范圍;

3)設(shè)函數(shù)的零點(diǎn)個(gè)數(shù)為m,試求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,平面,,,且,.

1)證明:.

2)若,試在棱上確定一點(diǎn),使與平面所成角的正弦值為.

查看答案和解析>>

同步練習(xí)冊(cè)答案