【題目】已知函數(shù),其中,,為自然對數(shù)的底數(shù).
若,,①若函數(shù)單調(diào)遞增,求實數(shù)的取值范圍;②若對任意,恒成立,求實數(shù)的取值范圍.
若,且存在兩個極值點,,求證:.
【答案】①;②;證明見解析.
【解析】
①問題等價于在上恒成立,即對任意恒成立,由此得解;②分及討論,容易得出結(jié)論;
解法一:表示出,令,求導后易證;令,,利用導數(shù)可證,進而得證;解法二:不等式的右邊同解法一;由當時,可得,由此得出
,可得證.
解:①因為單調(diào)遞增,所以對任意恒成立,即對任意恒成立,
,即;
②由①當時,單調(diào)遞增,故成立,符合題意,
當時,令得,
在上遞減,不合題意;
綜上,實數(shù)的取值范圍為.
解法一:因為,存在兩個極值點,,
所以有兩個不同的解,故,又,所以,
設兩根為,,則,,故,
令,因為,所以在上遞增,所以;
又
令,,則,
令得,又,則,
即,記為,則在上遞增,在上遞減,
又,,所以,即,綜上:.
解法二:不等式的右邊同解法一;
由當時,恒成立,所以有當時,,所以
.
科目:高中數(shù)學 來源: 題型:
【題目】若關于x的不等式e2x﹣alnxa恒成立,則實數(shù)a的取值范圍是( )
A.[0,2e]B.(﹣∞,2e]C.[0,2e2]D.(﹣∞,2e2]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在極坐標系中,,,弧,,所在圓的圓心分別為,,,曲線是弧,曲線是弧,曲線是弧.
(1)寫出曲線,,的極坐標方程;
(2)曲線由,,構(gòu)成,若曲線的極坐標方程為(,,,),寫出曲線與曲線的所有公共點(除極點外)的極坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)當時,試判斷零點的個數(shù);
(Ⅲ)當時,若對,都有()成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列滿足奇數(shù)項成等差,公差為,偶數(shù)項成等比,公比為,且數(shù)列的前項和為,,.
若,.
①求數(shù)列的通項公式;
②若,求正整數(shù)的值;
若,,對任意給定的,是否存在實數(shù),使得對任意恒成立?若存在,求出的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】全民健身旨在全面提高國民體質(zhì)和健康水平,倡導全民做到每天參加一次以上的健身活動,學會兩種以上健身方法,每年進行一次體質(zhì)測定.為響應全民健身號召,某單位在職工體測后就某項健康指數(shù)(百分制)隨機抽取了30名職工的體測數(shù)據(jù)作為樣本進行調(diào)查,具體數(shù)據(jù)如莖葉圖所示,其中有1名女職工的健康指數(shù)的數(shù)據(jù)模糊不清(用x表示),已知這30名職工的健康指數(shù)的平均數(shù)為76.2.
(1)根據(jù)莖葉圖,求樣本中男職工健康指數(shù)的眾數(shù)和中位數(shù);
(2)根據(jù)莖葉圖,按男女用分層抽樣從這30名職工中隨機抽取5人,再從抽取的5人中隨機抽取2人,求抽取的2人都是男職工的概率;
(3)經(jīng)計算,樣本中男職工健康指數(shù)的平均數(shù)為81,女職工現(xiàn)有數(shù)據(jù)(即剔除x)健康指數(shù)的平均數(shù)為69,方差為190,求樣本中所有女職工的健康指數(shù)的平均數(shù)和方差(結(jié)果精確到0.1).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)(M>0,>0,0<<)的最小值是﹣2,最小正周期是2,且圖象經(jīng)過點N(,1).
(1)求的解析式;
(2)在△ABC中,若,,求cosC的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com