【題目】如圖,在四棱錐中,平面,,,且,.

1)證明:.

2)若,試在棱上確定一點(diǎn),使與平面所成角的正弦值為.

【答案】1)證明見(jiàn)解析;(2)點(diǎn)為棱的中點(diǎn)

【解析】

1)在同一平面內(nèi)用數(shù)據(jù)說(shuō)話證明 利用平面,證明

從而得證平面,得到.

1)取的中點(diǎn),以為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,使用空間向量求及平面的一個(gè)法向量,利用夾角公式求解即可.

1)證明:∵,且,∴,

,又∵,∴,即.

平面,平面,∴,

又∵,∴平面,

平面,∴.

2)解:取的中點(diǎn),以為坐標(biāo)原點(diǎn),,,所在的直線分別為軸,軸,軸建立空間直角坐標(biāo)系.如圖所示.

設(shè),則,,

,,

設(shè)

.

由(1)可知,平面,∴為平面的一個(gè)法向量.

設(shè)與平面所成的角為.

,

整理得,解得(舍),

∴點(diǎn)為棱的中點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿足奇數(shù)項(xiàng)成等差,公差為,偶數(shù)項(xiàng)成等比,公比為,且數(shù)列的前項(xiàng)和為,,.

.

①求數(shù)列的通項(xiàng)公式;

②若,求正整數(shù)的值;

,對(duì)任意給定的,是否存在實(shí)數(shù),使得對(duì)任意恒成立?若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的實(shí)系數(shù)方程有四個(gè)不同的根,若這四個(gè)根在復(fù)平面上對(duì)應(yīng)的點(diǎn)共圓,則m的取值范圍是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某醫(yī)院對(duì)治療支氣管肺炎的兩種方案進(jìn)行比較研究,將志愿者分為兩組,分別采用方案和方案進(jìn)行治療,統(tǒng)計(jì)結(jié)果如下:

有效

無(wú)效

合計(jì)

使用方案

96

120

使用方案

72

合計(jì)

32

1)完成上述列聯(lián)表,并比較兩種治療方案有效的頻率;

2)能否在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為治療是否有效與方案選擇有關(guān)?

附:,其中.

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若函數(shù),試討論的單調(diào)性;

2)若,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)拋物線上一點(diǎn)作直線交拋物線E于另一點(diǎn)N.

1)若直線MN的斜率為1,求線段的長(zhǎng).

2)不過(guò)點(diǎn)M的動(dòng)直線l交拋物線EA,B兩點(diǎn),且以AB為直徑的圓經(jīng)過(guò)點(diǎn)M,問(wèn)動(dòng)直線l是否恒過(guò)定點(diǎn).如果有求定點(diǎn)坐標(biāo),如果沒(méi)有請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在極坐標(biāo)系中,極點(diǎn)為,一條封閉的曲線由四段曲線組成:,.

1)求該封閉曲線所圍成的圖形面積;

2)若直線與曲線恰有3個(gè)公共點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知橢圓的離心率為,點(diǎn)在橢圓C.

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)過(guò)坐標(biāo)原點(diǎn)的直線交CP,Q兩點(diǎn),點(diǎn)P在第一象限,軸,垂足為E,連結(jié)QE并延長(zhǎng)交C于點(diǎn)G.

①求證:是直角三角形;

②求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

1)求直線和曲線的直角坐標(biāo)方程;

2)若點(diǎn)坐標(biāo)為,直線與曲線交于兩點(diǎn),且,求實(shí)數(shù)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案