【題目】已知,圖中直棱柱的底面是菱形,其中.又點分別在棱上運動,且滿足:,.
(1)求證:四點共面,并證明∥平面.
(2)是否存在點使得二面角的余弦值為?如果存在,求出的長;如果不存在,請說明理由.
【答案】(1)見解析(2)不存在點使之成立.見解析
【解析】
(1) 在線段上分別取點,使得,進而得到與即可.
(2) 以為原點,分別以,及過且與平行的直線為軸建立空間直角坐標系,再求解平面的法向量與平面的法向量,再設,,再根據(jù)二面角的計算方法分析是否存在使得二面角為的余弦值為即可.
解:(1)證法1:在線段上分別取點,使得,易知四邊形是平行四邊形,所以,聯(lián)結(jié),
則,且
所以四邊形為矩形,故,同理,
且,故四邊形是平行四邊形,所以,所以
故四點共面
又,平面,平面,
所以平面.
證法2:因為直棱柱的底面是菱形,∴,底面,設交點為,以為原點,分別以,及過且與平行的直線為軸建立空間直角坐標系.則有,,,,設,,則,,,,,,所以,故四點共面.又,平面,平面,所以平面.
(2)平面中向量,,設平面的一個法向量為,則,可得其一個法向量為.
平面中,,,設平面的一個法向量為
,則,所以取其一個法向量.
若,則,
即有,,解得,故不存在點使之成立.
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,曲線的極坐標方程為(且).
(I)求直線的極坐標方程及曲線的直角坐標方程;
(Ⅱ)已知是直線上的一點,是曲線上的一點, ,,若的最大值為2,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知曲線與曲線,(為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系.
(1)寫出曲線,的極坐標方程;
(2)在極坐標系中,已知與,的公共點分別為,,,當時,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的零點構(gòu)成一個公差為的等差數(shù)列,把函數(shù)的圖象沿軸向右平移個單位,得到函數(shù)的圖象.關于函數(shù),下列說法正確的是( )
A. 在上是增函數(shù)B. 其圖象關于直線對稱
C. 函數(shù)是偶函數(shù)D. 在區(qū)間上的值域為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)).以原點為極點,以軸為非負半軸為極軸建立極坐標系,兩坐標系相同的長度單位.圓的方程為被圓截得的弦長為.
(Ⅰ)求實數(shù)的值;
(Ⅱ)設圓與直線交于點,若點的坐標為,且,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,圓,如圖,分別交軸正半軸于點.射線分別交于點,動點滿足直線與軸垂直,直線與軸垂直.
(1)求動點的軌跡的方程;
(2)過點作直線交曲線與點,射線與點,且交曲線于點.問:的值是否是定值?如果是定值,請求出該定值;如果不是定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,,其焦距為,點E為橢圓的上頂點,且.
(1)求橢圓C的方程;
(2)設圓的切線l交橢圓C于A,B兩點(O為坐標原點),求證;
(3)在(2)的條件下,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法:
①分類變量與的隨機變量越大,說明“與有關系”的可信度越大;
②以模型去擬合一組數(shù)據(jù)時,為了求出回歸方程,設,將其變換后得到線性方程,則,的值分別是和;
③在殘差圖中,殘差點分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高;
④若變量和滿足關系,且變量與正相關,則與也正相關.
正確的個數(shù)是________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中.
(I)求的單調(diào)區(qū)間;
(Ⅱ)若R上有兩個不同的零點,且,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com