分析 作出函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x≤0}\\{lnx,x>0}\end{array}\right.$的圖象如圖所示,f(x)=-1時(shí),x=-1或$\frac{1}{e}$,由g(x)=f(f(x)-k)+1=0,可得f(x)-k=-1或$\frac{1}{e}$,從而f(x)=k-1或k+$\frac{1}{e}$,根據(jù)圖象建立不等式,即可得出結(jié)論.
解答 解:函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x≤0}\\{lnx,x>0}\end{array}\right.$的圖象如圖所示.
f(x)=-1時(shí),x=-1或$\frac{1}{e}$,
g(x)=f(f(x)-k)+1=0,
∴f(x)-k=-1或$\frac{1}{e}$,
∴f(x)=k-1或k+$\frac{1}{e}$,
∵g(x)=f(f(x)-k)+1有5個(gè)零點(diǎn),
∴-1<k-1≤0且k+$\frac{1}{e}$>0,
∴0<k≤1,
故答案為:0<k≤1.
點(diǎn)評(píng) 本題考查函數(shù)的零點(diǎn),考查數(shù)形結(jié)合的數(shù)學(xué)思想,正確作出函數(shù)的圖象是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不必要又不充分條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $f(x)=3sin({\frac{x}{2}-\frac{π}{2}})$ | B. | $f(x)=3sin({\frac{x}{2}+\frac{π}{4}})$ | C. | f(x)=-3sinx | D. | f(x)=3cos2x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{12}$ | B. | $\frac{1}{21}$ | C. | $\frac{1}{9}$ | D. | $\frac{1}{11}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com