已知數(shù)學公式,則f{f[(-2)]}的值為


  1. A.
    0
  2. B.
    2
  3. C.
    4
  4. D.
    8
C
分析:欲求f{f[(-2)]}的值應從里向外逐一運算,根據自變量的大小代入相應的解析式進行求解即可.
解答:∵-2<0
∴f(-2)=0
∴f(f(-2))=f(0)
∵0=0
∴f(0)=2即f(f(-2))=f(0)=2
∵2>0
∴f(2)=22=4
即f{f[(-2)]}=f(f(0))=f(2)=4
故選C.
點評:本題主要考查了分段函數(shù)求值,同時考查了分類討論的數(shù)學思想和計算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)與g(x)的定義域為R,有下列5個命題:
①若f(x-2)=f(2-x),則f(x)的圖象自身關于直線y軸對稱;
②y=f(x-2)與y=f(2-x)的圖象關于直線x=2對稱;
③函數(shù)y=f(x+2)與y=f(2-x)的圖象關于y軸對稱;
④f(x)為奇函數(shù),且f(x)圖象關于直線x=
12
對稱,則f(x)周期為2;
⑤f(x)為偶函數(shù),g(x)為奇函數(shù),且g(x)=f(x-1),則f(x)周期為2.
其中正確命題的序號為
①②③④
①②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f'(x)是f(x)的導數(shù),記f(1)(x)=f'(x),f(n)(x)=(f(n-1)(x))'(n∈N,n≥2),給出下列四個結論:
①若f(x)=xn,則f(5)(1)=120;
②若f(x)=cosx,則f(4)(x)=f(x);
③若f(x)=ex,則f(n)(x)=f(x)(n∈N+);
④設f(x)、g(x)、f(n)(x)和g(n)(x)(n∈N+)都是相同定義域上的可導函數(shù),h(x)=f(x)•g(x),則h(n)(x)=f(n)(x)•g(n)(x)(n∈N+).
則結論正確的是
①②③
①②③
(多填、少填、錯填均得零分).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義:已知函數(shù)f(x)與g(x),若存在一條直線y=kx+b,使得對公共定義域內的任意實數(shù)均滿足g(x)≤f(x)≤kx+b恒成立,其中等號在公共點處成立,則稱直線y=kx+b為曲線f(x)與g(x)的“左同旁切線”.已知f(x)=Inx,g(x)=1-
1
x

(I)證明:直線y=x-l是f(x)與g(x)的“左同旁切線”;
(Ⅱ)設P(x1,f(x1)),Q(x2,f(x2))是函數(shù) f(x)圖象上任意兩點,且0<x1<x2,若存在實數(shù)x3>0,使得f′(x3)=
f(x2)-f(x1)
x2-x1
.請結合(I)中的結論證明x1<x3<x2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知f'(x)是f(x)的導數(shù),記f(1)(x)=f'(x),f(n)(x)=(f(n-1)(x))'(n∈N,n≥2),給出下列四個結論:
①若f(x)=xn,則f(5)(1)=120;
②若f(x)=cosx,則f(4)(x)=f(x);
③若f(x)=ex,則f(n)(x)=f(x)(n∈N+);
④設f(x)、g(x)、f(n)(x)和g(n)(x)(n∈N+)都是相同定義域上的可導函數(shù),h(x)=f(x)•g(x),則h(n)(x)=f(n)(x)•g(n)(x)(n∈N+).
則結論正確的是______(多填、少填、錯填均得零分).

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年四川省達州市高二(下)期末數(shù)學試卷(文科)(解析版) 題型:填空題

已知f'(x)是f(x)的導數(shù),記f(1)(x)=f'(x),f(n)(x)=(f(n-1)(x))'(n∈N,n≥2),給出下列四個結論:
①若f(x)=xn,則f(5)(1)=120;
②若f(x)=cosx,則f(4)(x)=f(x);
③若f(x)=ex,則f(n)(x)=f(x)(n∈N+);
④設f(x)、g(x)、f(n)(x)和g(n)(x)(n∈N+)都是相同定義域上的可導函數(shù),h(x)=f(x)•g(x),則h(n)(x)=f(n)(x)•g(n)(x)(n∈N+).
則結論正確的是    (多填、少填、錯填均得零分).

查看答案和解析>>

同步練習冊答案