3.在平行六面體ABCD-EFGH中,若$\overrightarrow{AG}$=2x$\overrightarrow{AB}$+3y$\overrightarrow{BC}$+3z$\overrightarrow{HD}$,則x+y+z等于( 。
A.$\frac{7}{6}$B.$\frac{2}{3}$C.$\frac{5}{6}$D.$\frac{1}{2}$

分析 在平行六面體ABCD-EFGH中,$\overrightarrow{AG}$=$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{CG}$,結合$\overrightarrow{AG}$=2x$\overrightarrow{AB}$+3y$\overrightarrow{BC}$+3z$\overrightarrow{HD}$,$\overrightarrow{CG}$=-$\overrightarrow{HD}$,求出x,y,z,即可得出結論.

解答 解:在平行六面體ABCD-EFGH中,$\overrightarrow{AG}$=$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{CG}$,
∵$\overrightarrow{AG}$=2x$\overrightarrow{AB}$+3y$\overrightarrow{BC}$+3z$\overrightarrow{HD}$,$\overrightarrow{CG}$=-$\overrightarrow{HD}$,
∴2x=1,3y=1,3z=-1,
∴x=$\frac{1}{2}$,y=$\frac{1}{3}$,z=$-\frac{1}{3}$,
∴x+y+z=$\frac{1}{2}$,
故選:D

點評 考查向量加法的平行四邊形法則,空間向量的加法運算,向量在幾何中的應用,難度中檔.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

13.已知集合A={0,1},B={z|z=x+y,x∈A,y∈A},則B的子集個數(shù)為(  )
A.8B.2C.4D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.若sin(α-$\frac{π}{6}$)=$\frac{1}{3}$,則cos(α+$\frac{π}{3}$)=-$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.將函數(shù)y=sin2x的圖象先向左平移$\frac{π}{4}$個單位長度,然后將所有點的橫坐標變?yōu)樵瓉淼?倍(縱坐標不變),則所得到的圖象對應函數(shù)解析式為( 。
A.$y=sin({2x-\frac{π}{4}})+1$B.y=2cos2xC.y=2sin2xD.y=cosx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知函數(shù)f(x)對任意實數(shù)x,y滿足f(x)+f(y)=f(x+y)+3,f(3)=6,當x>0 時,f(x)>3,那么,當f(2a+1)<5時,實數(shù)a的取值范圍是(-∞,$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=log2$\frac{2-x}{x-1}$的定義域為集合A,關于x的不等式2a<2-a-x的解集為B,若A∩B=A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.下列結論正確的是(  )
A.“x≠1”是“x2≠1”的充分不必要條件
B.若“p∧q”與“?p∨q”都是假命題,則p真q假
C.命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x<0”
D.命題“能被2整除的數(shù)是偶數(shù)”的逆否命題是“不能被2整除的數(shù)不是偶數(shù)”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知集合P={1,2,3},Q={x|x2-3x+2≤0},則P∩Q=( 。
A.{1}B.{2}C.{1,3}D.{1,2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知數(shù)列滿足${S_n}=2{n^2}-n+1$,則通項公式an=$\left\{\begin{array}{l}{2,}&{n=1}\\{4n-3,}&{n≥2}\end{array}\right.$.

查看答案和解析>>

同步練習冊答案