【題目】如圖所示,已知圓O1與圓O2相交于A,B兩點,過點A作圓O1的切線交圓O2于點C,過點B作兩圓的割線,分別交圓O1 , 圓O2于點D,E,DE與AC相交于點P.
(1)求證:AD∥EC;
(2)若AD是圓O2的切線,且PA=3,PC=1,AD=6,求DB的長.
【答案】
(1)證明:連接AB,
∵AC是圓O1的切線,∴∠BAC=∠D,
又∵∠BAC=∠E,∴∠D=∠E,∴AD∥EC
(2)解:設PB=x,PE=y,
∵PA=3,PC=1,∴xy=3①,
∵AD∥EC,∴ ,且DP=3y
由AD是圓O2的切線,∴AD2=DBDE,∴62=(3y﹣x)4y②
由①②可得, ,∴BD=3y﹣x=
【解析】(1)連接AB,根據弦切角等于所夾弧所對的圓周角得到∠BAC=∠D,又根據同弧所對的圓周角相等得到∠BAC=∠E,等量代換得到∠D=∠E,根據內錯角相等得到兩直線平行即可;(2)根據切割線定理得到AD2=DBDE,利用AD是圓O2的切線,AD2=DBDE,由此即可求DB的長.
科目:高中數學 來源: 題型:
【題目】過拋物線y2=4x的焦點F的直線交拋物線于A、B兩點,分別過A、B兩點作準線的垂線,垂足分別為A′、B′兩點,以線段A′B′為直徑的圓C過點(﹣2,3),則圓C的方程為( )
A.(x+1)2+(y﹣2)2=2
B.(x+1)2+(y﹣1)2=5
C.(x+1)2+(y+1)2=17
D.(x+1)2+(y+2)2=26
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓 (a>b>0)的焦點在圓x2+y2=3上,且離心率為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過原點O的直線l與橢圓C交于A,B兩點,F為右焦點,若△FAB為直角三角形,求直線l的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com