【題目】設(shè)拋物線的焦點(diǎn)為F,過點(diǎn)F作垂直于x軸的直線與拋物線交于A,B兩點(diǎn),且以線段AB為直徑的圓過點(diǎn).

(1)求拋物線C的方程;

(2)設(shè)過點(diǎn)的直線分別與拋物線C交于點(diǎn)D,E和點(diǎn)G,H,且,求四邊形面積的最小值.

【答案】(1);(2)48.

【解析】

1)根據(jù)題意可得:圓的半徑,從而求出值,得到拋物線方程;

2)設(shè)出的方程,分別與拋物線聯(lián)立方程,消去,得到關(guān)于的一元二次方程,寫出韋達(dá)定理,利用弦長公式求出、的長,從而表示出四邊形面積,利用二次函數(shù)的性質(zhì)求出最小值。

由于過點(diǎn) 作垂直于 軸的直線與拋物線交于兩點(diǎn),則,

以線段為直徑的圓過點(diǎn),則圓的半徑, 解得:,

故拋物線的方程為.

(2)設(shè)直線的方程為,聯(lián)立,消去得:

,設(shè)點(diǎn),則,,

所以,

同理可得:,

則四邊形的面積:

.

,則

當(dāng),即時(shí),,四邊形DGEH面積的最小值為48.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在棱長為1的正方體中,E,F(xiàn)分別為線段CD和上的動點(diǎn),且滿足,則四邊形所圍成的圖形(如圖所示陰影部分)分別在該正方體有公共頂點(diǎn)的三個面上的正投影的面積之和( 。

A. 有最小值B. 有最大值C. 為定值3D. 為定值2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍;

(2)證明:當(dāng)時(shí),函數(shù)有最小值,設(shè)最小值為,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是正方形,側(cè)棱底面,,的中點(diǎn),作于點(diǎn).

(1)求直線于底面所成角的正切值;

(2)證明:∥平面;

(3)證明:平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若存在實(shí)數(shù),使得,求正實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體.

1)求證:

2)求異面直線所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)對某市工薪階層關(guān)于“樓市限購令”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽調(diào)了人,他們月收入的頻數(shù)分布及對“樓市限購令”贊成人數(shù)如下表.

月收入(單位百元)

頻數(shù)

贊成人數(shù)

1)由以上統(tǒng)計(jì)數(shù)據(jù)填下面列聯(lián)表,并問是否有的把握認(rèn)為“月收入以元為分界點(diǎn)對“樓市限購令”的態(tài)度有差異;

月收入不低于百元的人數(shù)

月收入低于百元的人數(shù)

合計(jì)

贊成

______________

______________

______________

不贊成

______________

______________

______________

合計(jì)

______________

______________

______________

2)若對在、的被調(diào)查者中各隨機(jī)選取兩人進(jìn)行追蹤調(diào)查,記選中的人中不贊成“樓市限購令”的人數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.

參考公式:,其中.

參考值表:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】交強(qiáng)險(xiǎn)是車主必須為機(jī)動車購買的險(xiǎn)種,若普通座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動機(jī)制,保費(fèi)與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動情況如下表(其中浮動比率是在基準(zhǔn)保費(fèi)上上下浮動):

交強(qiáng)險(xiǎn)浮動因素和浮動費(fèi)率比率表

浮動因素

浮動比率

上一個年度未發(fā)生有責(zé)任道路交通事故

下浮

上兩個年度未發(fā)生有責(zé)任道路交通事故

下浮

上三個及以上年度未發(fā)生有責(zé)任道路交通事故

下浮

上一個年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故

上一個年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故

上浮

上一個年度發(fā)生有責(zé)任道路交通死亡事故

上浮

某機(jī)構(gòu)為了研究某一品牌普通座以下私家車的投保情況,隨機(jī)抽取了輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格

類型

數(shù)量

(Ⅰ)求這輛車普通座以下私家車在第四年續(xù)保時(shí)保費(fèi)的平均值(精確到

(Ⅱ)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基準(zhǔn)保費(fèi)的車輛記為事故車.假設(shè)購進(jìn)一輛事故車虧損,一輛非事故車盈利,且各種投保類型車的頻率與上述機(jī)構(gòu)調(diào)查的頻率一致.試完成下列問題:

①若該銷售商店內(nèi)有六輛(車齡已滿三年)該品牌二手車,某顧客欲在該店內(nèi)隨機(jī)挑選輛車,求這輛車恰好有一輛為事故車的概率;

②若該銷售商一次購進(jìn)輛車車齡已滿三年)該品牌二手車,求一輛車盈利的平均值.

查看答案和解析>>

同步練習(xí)冊答案