16.已知函數(shù)f(x)是R上的奇函數(shù),f(1)=1,且對任意x∈R都有f(x+6)=f(x)+f(3)成立,則f(2016)+f(2017)=1.

分析 求出f(3)=0,可得f(x)是以6為周期的周期函數(shù),利用函數(shù)的周期性和奇偶性進行轉(zhuǎn)化求解,即可得出結(jié)論.

解答 解:∵f(x+6)=f(x)+f(3)中,
∴令x=-3,得f(3)=f(-3)+f(3),即f(-3)=0.
又f(x)是R上的奇函數(shù),故f(-3)=-f(3)=0.f(0)=0,
∴f(3)=0,
故f(x+6)=f(x),
∴f(x)是以6為周期的周期函數(shù),
從而f(2017)=f(6×336+1)=f(1)=1.
f(2016)=f(6×336)=f(0)=0.
故f(2016)+f(2017)=0+1=1,
故答案為1.

點評 本題主要考查函數(shù)值的計算以及奇函數(shù)、周期函數(shù)的應(yīng)用,確定f(x)是以6為周期的周期函數(shù)是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知f(x+1)=2x-1,則f(x)=2x-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.“若x=0或x=1,則x2-x=0”的否命題為( 。
A.若x=0或x=1,則x2-x≠0B.若x2-x=0,則x=0或x=1
C.若x≠0或x≠1,則x2-x≠0D.若x≠0且x≠1,則x2-x≠0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=$\sqrt{3}$(cos2x-sin2x)+2sinxcosx
(1)求f(x)的最小正周期;
(2)設(shè)x∈[-$\frac{π}{3}$,$\frac{π}{3}$],求f(x)的值域和單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.計算:0.027${\;}^{\frac{1}{3}}$-(-$\frac{1}{7}$)-2+256${\;}^{\frac{3}{4}}$-3-1+($\sqrt{2}$-1)0-(log62+log63)=$\frac{449}{30}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.運行如圖的程序時,WHILE循環(huán)語句的執(zhí)行次數(shù)是( 。
A.3B.4C.15D.19

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若直線l與平面α相交,則( 。
A.平面α內(nèi)存在直線與l異面B.平面α內(nèi)存在唯一直線與l平行
C.平面α內(nèi)存在唯一直線與l垂直D.平面α內(nèi)的直線與l都相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=log${\;}_{\frac{1}{2}}$(3x2-ax+5)在[-1,+∞)上單調(diào)遞減,則實數(shù)a的取值范圍是( 。
A.[-8,-6]B.(-8,-6]C.(-∞,-8)∪(-6,+∞)D.(-∞,-6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)y=$\frac{ax+1}{2x-3}$的圖象與其反函數(shù)圖象重合,則a=3.

查看答案和解析>>

同步練習(xí)冊答案