15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+4x-1,x<0}\\{-{e}^{x}-x,x≥0}\end{array}\right.$若關(guān)于x的方程f(x)+m=0有3個實數(shù)根,則實數(shù)m的取值范圍為( 。
A.(1,3)B.(-3,-1)C.(1,5)D.(-5,-1)

分析 利用函數(shù)與方程之間的關(guān)系轉(zhuǎn)化為兩個函數(shù)的交點問題,作出函數(shù)f(x)的圖象,利用數(shù)形結(jié)合進行求解即可.

解答 解:由f(x)+m=0得f(x)=-m,
作出函數(shù)f(x)的圖象如圖:
由圖象知要使f(x)+m=0有3個實數(shù)根,
則等價為f(x)=-m有3個不同的交點,
即-5<-m<-1,即1<m<5,
即實數(shù)m的取值范圍是(1,5),
故選:C

點評 本題主要考查函數(shù)與方程的應(yīng)用,根據(jù)條件轉(zhuǎn)化兩個函數(shù)的圖象問題是解決本題的關(guān)鍵.注意使用數(shù)形結(jié)合進行求解.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+1,0≤x<1}\\{{2}^{x-1}-1,1≤x<3}\end{array}\right.$,若存在m,n,當0≤m<n<3時,有f(m)=f(n),則nf(m)的取值范圍是( 。
A.[1,3)B.[1,2log23+2)C.[2,3)D.[2,2log23+2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.函數(shù)f(x)是定義在R上的奇函數(shù),且f(x-1)為偶函數(shù),當x∈[0,1]時,f(x)=x${\;}^{\frac{1}{2}}$,若g(x)=f(x)-2x-b有三個零點,則實數(shù)b的取值范圍是( 。
A.(k-$\frac{1}{8}$,k+$\frac{1}{8}$),k∈ZB.(2k-$\frac{1}{8}$,2k+$\frac{1}{8}$),k∈ZC.(4k-$\frac{1}{8}$,4k+$\frac{1}{8}$),k∈ZD.(8k-$\frac{1}{8}$,8k+$\frac{1}{8}$),k∈Z

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知函數(shù)f(x)=$\frac{{e}^{x}}{|x|}$,關(guān)于x的方程f2(x)-2af(x)+a-1=0(m∈R)有四個相異的實數(shù)根,則a的取值范圍是($\frac{{e}^{2}-1}{2e-1}$,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知集合A={(x,y)|x-y+m=0},B={(x,y)|y=$\sqrt{1-(x-2)^{2}}$+1},若A∩B=∅,則實數(shù)m的取值范圍是m<-2或m>-1+$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知f(α)=$\frac{tan(π-α)sin(-2π-α)cos(6π-α)}{sin(α+\frac{3}{2}π)cos(α-\frac{1}{2}π)}$
(1)化簡f(α);
(2)若sinα=-$\frac{2}{3}$,α∈[一π,-$\frac{π}{2}$],求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.若f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x∈[0,+∞)}\\{2-x,x∈(-∞,0)}\end{array}\right.$,則f[f(-3)]=26.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知拋物線x2=8y與雙曲線$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線交于點A,若點A到拋物線的準線的距離為4,則雙曲線的離心率為( 。
A.$\sqrt{3}$B.2C.$\sqrt{5}$D.$\frac{\sqrt{5}}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.雙曲線$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{5}$=1的左焦點到右頂點的距離為(  )
A.1B.2C.4D.5

查看答案和解析>>

同步練習冊答案