4.已知拋物線x2=8y與雙曲線$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線交于點(diǎn)A,若點(diǎn)A到拋物線的準(zhǔn)線的距離為4,則雙曲線的離心率為(  )
A.$\sqrt{3}$B.2C.$\sqrt{5}$D.$\frac{\sqrt{5}}{5}$

分析 設(shè)雙曲線$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1的一條漸近線方程為y=$\frac{a}$x,代入拋物線的方程可得A的坐標(biāo),求得拋物線的準(zhǔn)線方程,由題意可得$\frac{8{a}^{2}}{^{2}}$+2=4,即為b=2a,由a,b,c的關(guān)系和離心率公式,可得所求值.

解答 解:設(shè)雙曲線$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1的一條漸近線方程為y=$\frac{a}$x,
代入拋物線的方程x2=8y,可得x=$\frac{8a}$,
交點(diǎn)A($\frac{8a}$,$\frac{8{a}^{2}}{^{2}}$),
拋物線x2=8y的準(zhǔn)線為y=-2,
由點(diǎn)A到拋物線的準(zhǔn)線的距離為4,
可得$\frac{8{a}^{2}}{^{2}}$+2=4,
即為b=2a,c=$\sqrt{{a}^{2}+^{2}}$=$\sqrt{5}$a,
即有e=$\frac{c}{a}$=$\sqrt{5}$.
故選:C.

點(diǎn)評(píng) 本題考查雙曲線的離心率的求法,注意運(yùn)用交點(diǎn)A到拋物線的準(zhǔn)線的距離,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}的前n項(xiàng)和為Sn,滿足a1=$\frac{1}{3},{S_{n+1}}={S_n}+4{a_n}$+3.
(Ⅰ)證明:{an+1}是等比數(shù)列;
(Ⅱ)求數(shù)列{an}的前n項(xiàng)和為Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+4x-1,x<0}\\{-{e}^{x}-x,x≥0}\end{array}\right.$若關(guān)于x的方程f(x)+m=0有3個(gè)實(shí)數(shù)根,則實(shí)數(shù)m的取值范圍為( 。
A.(1,3)B.(-3,-1)C.(1,5)D.(-5,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某小組共有13人,其中男生8人,女生5人,從中選出3人,要求至多有2名男生,則不同的選法共有( 。
A.140種B.150種C.220種D.230種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2x+\frac{4}{x}+m(x>0)}\\{{2}^{x}+m(x≤0)}\end{array}\right.$,若方程f(x)=-2x有且只有一個(gè)實(shí)數(shù)根,則實(shí)數(shù)m的取值范圍為m≥-1或m=-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在等差數(shù)列{an}中,a1+a4+a7=27,a3+a6+a9=9,則a9=-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在三角形ABC中,角A、B、C所對(duì)的邊分別為a、b、c,且a=2,∠C=$\frac{π}{4}$,cosB=$\frac{3}{5}$.
(1)求sinA的值;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若f(x)=x+$\frac{4}{x}$,則下列結(jié)論正確的是( 。
A.f(x)的最小值為4
B.f(x)在(0,2)上單調(diào)遞減,在(2,+∞)上單調(diào)遞增
C.f(x)的最大值為4
D.f(x)在(0,2)上單調(diào)遞增,在(2,+∞)上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知拋物線y2=4x的焦點(diǎn)到雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一條漸近線的距離為$\frac{1}{2}$,則該雙曲線的離心率為( 。
A.$\frac{{\sqrt{5}}}{2}$B.$\sqrt{2}$C.$\frac{{2\sqrt{3}}}{3}$D.$\sqrt{5}+1$

查看答案和解析>>

同步練習(xí)冊(cè)答案