【題目】已知橢圓的離心率為,且與雙曲線有相同的焦點.
(1)求橢圓的方程;
(2)直線與橢圓相交于,兩點,點滿足,點,若直線斜率為,求面積的最大值及此時直線的方程.
【答案】(1)(2),直線的方程為
【解析】
(1)有題意有可求解.
(2)先討論特特殊情況, 是否為原點,然后當(dāng)的斜率存在時, 設(shè)的斜率為,表示出的長度,進(jìn)一步表示出的面積,然后求最值.
解:(1)由題設(shè)知
,
橢圓的方程為:
(2)法一: 為的中點
又
1)當(dāng)為坐標(biāo)原點時
當(dāng)的斜率不存在時,此時、為短軸的兩個端點
當(dāng)的斜率存在時,設(shè)的斜率為
設(shè),,則,代入橢圓方程
整理得:
,
到的距離
解一:令
令
或
函數(shù)在單調(diào)遞增,單調(diào)遞減,單調(diào)遞增
時,為的極大值點,也是最大值點
直線方程為
解二:設(shè),則
要得的最大值
,
當(dāng),時,即,時等號成立
,直線方程為
2)當(dāng)不為原點時,由,
,,三點共線
,設(shè),,,
的斜率為
,,
,在橢圓上,
得
,即
設(shè)直線代入橢圓方程,整理得
,
到直線的距離
令,,
令,,,
在上單調(diào)遞增,在上單調(diào)遞減
,
,此時直線
綜上所述:,直線的方程為
解二:設(shè),,為的中點,在橢圓上
當(dāng)直線的斜率不存在時,設(shè)則,
, 所以
,則,為短軸上的兩個端點
當(dāng)直線的斜存在時,設(shè),
消去得
,
,
由得
或
下同解法一
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)),曲線與軸交于兩點.以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系.
(1)求直線的普通方程及曲線的極坐標(biāo)方程;
(2)若直線與曲線在第一象限交于點,且線段的中點為,點在曲線上,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前n項和, 是等差數(shù)列,且.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)令.求數(shù)列的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x≥0時,f(x)=x2﹣2x.
(1)求f(0)及f(f(1))的值;
(2)求函數(shù)f(x)的解析式;
(3)若關(guān)于x的方程f(x)﹣m=0有四個不同的實數(shù)解,求實數(shù)m的取值范圍,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題:函數(shù)且,命題:集合,且.
(1)若命題中有且僅有一個為真命題,求實數(shù)的取值范圍;
(2)設(shè)皆為真命題時,的取值范圍為集合,已知,若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,我國自主研發(fā)的長征系列火箭的頻頻發(fā)射成功,標(biāo)志著我國在該領(lǐng)域已逐步達(dá)到世界一流水平.火箭推進(jìn)劑的質(zhì)量為,去除推進(jìn)劑后的火箭有效載荷質(zhì)量為,火箭的飛行速度為,初始速度為,已知其關(guān)系式為齊奧爾科夫斯基公式:,其中是火箭發(fā)動機(jī)噴流相對火箭的速度,假設(shè),,,是以為底的自然對數(shù),,.
(1)如果希望火箭飛行速度分別達(dá)到第一宇宙速度、第二宇宙速度、第三宇宙速度時,求的值(精確到小數(shù)點后面1位).
(2)如果希望達(dá)到,但火箭起飛質(zhì)量最大值為,請問的最小值為多少(精確到小數(shù)點后面1位)?由此指出其實際意義.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且函數(shù)奇函數(shù)而非偶函數(shù).
(1)寫出的單調(diào)性(不必證明);
(2)當(dāng)時,的取值范圍恰為,求與的值;
(3)設(shè)是否存在實數(shù)使得函數(shù)有零點?若存在,求出實數(shù)的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】市某機(jī)構(gòu)為了調(diào)查該市市民對我國申辦年足球世界杯的態(tài)度,隨機(jī)選取了位市民進(jìn)行調(diào)查,調(diào)查結(jié)果統(tǒng)計如下:
支持 | 不支持 | 合計 | |
男性市民 | |||
女性市民 | |||
合計 |
(1)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫完整;
(2)利用(1)完成的表格數(shù)據(jù)回答下列問題:
(i)能否在犯錯誤的概率不超過的前提下認(rèn)為支持申辦足球世界杯與性別有關(guān);
(ii)已知在被調(diào)查的支持申辦足球世界杯的男性市民中有位退休老人,其中位是教師,現(xiàn)從這位退休老人中隨機(jī)抽取人,求至多有位老師的概率.
附:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在與時都取得極值.
(1)求實數(shù)的值;
(2)若對任意,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com