分析 (1)求出函數(shù)的導(dǎo)數(shù),得到0,2是方程3x2+2ax+b=0的根,代入方程解出a,b的值即可;(2)求出f(x)在[0,1]的最小值,問題轉(zhuǎn)化為f(1)≤c2-2,解出即可.
解答 解:(1)f(x)=x3+ax2+bx+c,f′(x)=3x2+2ax+b,
函數(shù)f(x)在x=0,x=2處取得極值,
∴0,2是方程3x2+2ax+b=0的根,
把x=0,2代入得:$\left\{\begin{array}{l}{b=0}\\{12+4a+b=0}\end{array}\right.$,
解得a=-3,b=0;
(2)由(1)得f(x)=x3-3x2+c,
f′(x)=3x2-6x=3x(x-2),
令f′(x)<0,解得:0<x<2,
∴函數(shù)f(x)在[0,1]遞減,
∴f(x)max=f(0)=c,
若x∈[0,1],f(x)≤c2-2恒成立,
∴f(0)≤c2-2,∴c2-2≥c,
即c2-c-2≥0,解得:c≥2或c≤-1.
點評 本題考查了函數(shù)的單調(diào)性、極值問題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)恒成立問題,是一道中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3π}{4}$ | B. | $\frac{π}{2}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{e}$,1) | B. | (0,$\frac{1}{e}$)∪(1,+∞) | C. | ($\frac{1}{e}$,e) | D. | (0,1)∪(e,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com