18.已知函數(shù)f($\frac{x}{2}$)=-$\frac{1}{8}$x3+$\frac{m}{4}$x2-m,g(x)=-$\frac{1}{2}$x3+mx2+(a+1)x+2xcosx-m.
(1)若曲線y=f(x)僅在兩個不同的點A(x1,f(x1)),B(x1,f(x2))處的切線都經過點(2,t),求證:t=3m-8,或t=-$\frac{1}{27}$m3+$\frac{2}{3}$m2-m.
(2)當x∈[0,1]時,若f(x)≥g(x)恒成立,求a的取值范圍.

分析 (1)求出f(x)的導數(shù),可得A,B處的切線方程,代入點(2,t),可得x1,x2為方程t-(-x3+mx2-m)=(-3x2+2mx)(2-x)的兩個不等實根,化簡整理可得,2x3-(m+6)x2+4mx-m-t=0,令g(x)=2x3-(m+6)x2+4mx-m-t,求出導數(shù),由題意可得g(x)必有一個極值為0,計算即可得到證明;
(2)由題意可得-x3+mx2-m≥-$\frac{1}{2}$x3+mx2+(a+1)x+2xcosx-m,即有$\frac{1}{2}$x3+(a+1)x+2xcosx≤0,討論x=0,顯然成立;當0<x≤1時,運用參數(shù)分離和構造函數(shù)法,求出導數(shù),判斷單調性,求出最值,即可得到所求a的范圍.

解答 解:(1)證明:由f($\frac{x}{2}$)=-$\frac{1}{8}$x3+$\frac{m}{4}$x2-m,可得f(x)=-x3+mx2-m,
f′(x)=-3x2+2mx,可得A處的切線方程:y-(-x13+mx12-m)=(-3x12+2mx)(x-x1),
同理可得B處的切線方程:y-(-x23+mx22-m)=(-3x22+2mx)(x-x2),
代入點(2,t),可得x1,x2為方程t-(-x3+mx2-m)=(-3x2+2mx)(2-x)的兩個不等實根,
化簡整理可得,2x3-(m+6)x2+4mx-m-t=0,
令g(x)=2x3-(m+6)x2+4mx-m-t,g′(x)=6x2-2(m+6)x+4m=2(3x-m)(x-2),
由g′(x)=0,可得x=2或x=$\frac{m}{3}$.
g(2)=3m-8-t,g($\frac{m}{3}$)=-$\frac{1}{27}$m3+$\frac{2}{3}$m2-m-t,
由題意可得g(x)必有一個極值為0,則t=3m-8,或t=-$\frac{1}{27}$m3+$\frac{2}{3}$m2-m;
(2)當x∈[0,1]時,若f(x)≥g(x)恒成立,
即為-x3+mx2-m≥-$\frac{1}{2}$x3+mx2+(a+1)x+2xcosx-m,
即有$\frac{1}{2}$x3+(a+1)x+2xcosx≤0,
當x=0時,上式顯然成立;
當0<x≤1時,即有-a-1≥$\frac{1}{2}$x2+2cosx恒成立,
令m(x)=$\frac{1}{2}$x2+2cosx,m′(x)=x-2sinx,m′′(x)=1-2cosx,
由0<x≤1時,1<2cos1≤2cosx<2,則1-2cosx<0,
y=x-2sinx在(0,1]遞減,可得x-2sinx<0,
則m(x)在(0,1]遞減,可得m(x)<m(0)=2,
則-a-1≥2,解得a≤-3.
a的取值范圍是(-∞,-3].

點評 本題考查導數(shù)的運用:求切線的方程和不等式恒成立問題解法,注意運用分類討論的思想方法和轉化思想,構造函數(shù)法,運用單調性,考查化簡整理的運算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2017屆湖南衡陽縣四中高三9月月考數(shù)學(文)試卷(解析版) 題型:填空題

函數(shù)的增區(qū)間為____________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側棱PA⊥底面ABCD,點E是PD的中點,AB=2,PA=3.
(1)求證:PB∥平面EAC;
(2)求證:CD⊥AE;
(3)求二面角E-AC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.拋物線y2=4x的焦點到雙曲線x2-$\frac{{y}^{2}}{2}$=1的漸近線的距離等于(  )
A.$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{2}}{3}$C.$\frac{\sqrt{6}}{3}$D.$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.若直線y=2x+$\frac{p}{2}$與拋物線x2=2py(p>0)相交于A,B兩點,則|AB|等于( 。
A.5pB.10pC.11pD.12p

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.如圖,在三棱錐A-BCD中,平面ABC⊥平面BCD,△BAC與△BCD均為等腰直角三角形,且∠BAC=∠BCD=90°,BC=2,點P是線段AB上的動點,若線段CD上存在點Q,使得異面直線PQ與AC成30°的角,則線段PA長的取值范圍是( 。
A.(0,$\frac{\sqrt{2}}{2}$)B.(0,$\frac{\sqrt{6}}{3}$)C.($\frac{\sqrt{2}}{2}$,$\sqrt{2}$)D.($\frac{\sqrt{6}}{3}$,$\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.定義域為R的函數(shù)f(x)滿足:f(x+2)=2f(x),當x∈[0,2)時,$f(x)=\left\{\begin{array}{l}{x^2}-x,x∈[0,1)\\-{(\frac{1}{2})^{|x-\frac{3}{2}|}},x∈[1,2)\end{array}\right.$,若x∈[-4,-2)時,$f(x)≥\frac{1}{4}-\frac{1}{2t}$恒成立,則實數(shù)t的取值范圍是( 。
A.$(0,\frac{2}{5}]$B.$(0,\frac{2}{3}]$C.(0,1]D.(0,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知區(qū)間U={1,2,3,4,5},A={1,2,3},B={1,4},則(∁UA)∩B=( 。
A.{4}B.{1}C.{4,5}D.{1,4,5}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖,四棱錐P-ABCD中,底面是以O為中心的菱形,PO⊥底面$ABCD,AB=2,∠BAD=\frac{π}{3},M$為BC上一點,且$BM=\frac{1}{2}$.
(1)證明:BC⊥平面POM;
(2)若MP⊥AP,求四棱錐P-ABCD的體積.

查看答案和解析>>

同步練習冊答案