【題目】已知函數,曲線在點處切線與直線垂直(其中為自然對數的底數).
(1)求的解析式及單調減區(qū)間;
(2)是否存在常數,使得對于定義域的任意恒成立,若存在,求出 的值;若
不存在,說明理由.
科目:高中數學 來源: 題型:
【題目】劉徽是我國魏晉時期著名的數學家,他編著的《海島算經》中有一問題:“今有望海島,立兩表齊,高三丈,前后相去千步,令后表與前表相直。從前表卻行一百二十三步,人目著地取望島峰,與表末參合。從后表卻行百二十七步,人目著地取望島峰,亦與表末參合。問島高幾何?” 意思是:為了測量海島高度,立了兩根表,高均為5步,前后相距1000步,令后表與前表在同一直線上,從前表退行123步,人恰觀測到島峰,從后表退行127步,也恰觀測到島峰,則島峰的高度為( )(注:3丈=5步,1里=300步)
A. 4里55步 B. 3里125步 C. 7里125步 D. 6里55步
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數相鄰兩對稱軸間的距離為,若將的圖像先向左平移個單位,再向下平移1個單位,所得的函數為奇函數.
(1)求的解析式,并求的對稱中心;
(2)若關于的方程在區(qū)間上有兩個不相等的實根,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了研究某種微生物的生長規(guī)律,需要了解環(huán)境溫度()對該微生物的活性指標的影響,某實驗小組設計了一組實驗,并得到如表的實驗數據:
環(huán)境溫度() | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
活性指標 |
(Ⅰ)由表中數據判斷關于的關系較符合還是,并求關于的回歸方程(,取整數);
(Ⅱ)根據(Ⅰ)中的結果分析:若要求該種微生物的活性指標不能低于,則環(huán)境溫度應不得高于多少?
附:,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了對某課題進行研究,用分層抽樣方法從三所高校的相關人員中,抽取若干人組成研究小組,有關數據見下表(單位:人)
高校 | 相關人數 | 抽取人數 |
A | 18 | |
B | 36 | 2 |
C | 54 |
(Ⅰ)求,;
(Ⅱ)若從高校抽取的人中選2人作專題發(fā)言,求這二人都來自高校的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線, 是焦點,直線是經過點的任意直線.
(Ⅰ)若直線與拋物線交于、兩點,且(是坐標原點, 是垂足),求動點的軌跡方程;
(Ⅱ)若、兩點在拋物線上,且滿足,求證:直線必過定點,并求出定點的坐標.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com