18.以原點為頂點,x軸為對稱軸的拋物線的焦點在直線2x-4y-11=0上,則此拋物線的方程是( 。
A.y2=11xB.y2=-11xC.y2=22xD.y2=-22x

分析 求出拋物線的焦點坐標(biāo),然后求解拋物線方程.

解答 解:以原點為頂點,x軸為對稱軸的拋物線的焦點在直線2x-4y-11=0上,
可得y=0時,x=$\frac{11}{2}$,拋物線的焦點坐標(biāo)($\frac{11}{2}$,0),
所以拋物線的方程為:y2=22x.
故選:C.

點評 本題考查拋物線的簡單性質(zhì)的應(yīng)用,拋物線方程的求法,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在$(2{x}^{2}-\frac{1}{\sqrt{x}})^{6}$的展開式中,含x7的項的系數(shù)是( 。
A.60B.160C.180D.240

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某中學(xué)為豐富教職工生活,在元旦期間舉辦趣味投籃比賽,設(shè)置A,B兩個投籃位置,在A點投中一球得1分,在B點投中一球得2分,規(guī)則是:每人按先A后B的順序各投籃一次(計為投籃兩次),教師甲在A點和B點投中的概率分別為$\frac{1}{2}$和$\frac{1}{3}$,且在A,B兩點投中與否相互獨立
(1)若教師甲投籃兩次,求教師甲投籃得分0分的概率
(2)若教師乙與教師甲在A,B投中的概率相同,兩人按規(guī)則投籃兩次,求甲得分比乙高的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若$cosA=-\frac{3}{5}$,$sinC=\frac{1}{2}$,c=1,則△ABC的面積為$\frac{8\sqrt{3}-6}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.直線x-2y+1=0與圓x2+y2=2相交于A,B兩點,則|AB|=$\frac{6\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)直線l與拋物線x2=4y相交于A,B兩點,與圓x2+(y-5)2=r2(r>0)相切于點M,且M為線段AB中點,若這樣的直線l恰有4條,則r的取值范圍是( 。
A.(1,3)B.(1,4)C.(2,3)D.(2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知關(guān)于x的不等式x2-4ax+3a2<0(a>0)的解集為(x1,x2),則${x_1}+{x_2}+\frac{a}{{{x_1}{x_2}}}$的最小值是( 。
A.$\frac{{\sqrt{6}}}{3}$B.$\frac{{2\sqrt{3}}}{3}$C.$\frac{{4\sqrt{3}}}{3}$D.$-\frac{{4\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.甲7:00~8:00到,乙7:20~7:50到,先到者等候另一人10分鐘,過時離去.則 求兩人會面的概率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù) f(x)=log2(1+x)-log2(1-x).
(1)求 f(x)的定義域;
(2)判斷 f(x)的奇偶性,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案