8.設(shè)$\frac{2}{3}$<a<1,函數(shù)f(x)=x3-$\frac{3}{2}$ax2+b在區(qū)間[-1,1]上的最大值為1,最小值為-$\frac{\sqrt{6}}{2}$,求f(x)的表達(dá)式.

分析 求導(dǎo)f′(x)=3x2-3ax=3x(x-a),從而確定函數(shù)f(x)在[-1,0)上是增函數(shù),在(0,a)上是減函數(shù),在(a,1]上是增函數(shù);從而可得f(-1)=-1-$\frac{3}{2}$a+b=-$\frac{\sqrt{6}}{2}$,f(0)=b=1,從而求得.

解答 解:∵f(x)=x3-$\frac{3}{2}$ax2+b,
∴f′(x)=3x2-3ax=3x(x-a),
∴當(dāng)x∈[-1,0)時,f′(x)>0;
當(dāng)x∈(0,a)時,f′(x)<0;
當(dāng)x∈(a,1]時,f′(x)>0;
∴f(x)在[-1,0)上是增函數(shù),在(0,a)上是減函數(shù),在(a,1]上是增函數(shù);
而f(-1)=-1-$\frac{3}{2}$a+b,f(a)=a3-$\frac{3}{2}$a3+b,
f(a)-f(-1)=-$\frac{1}{2}$a3+$\frac{3}{2}$a+1,
令g(a)=-$\frac{1}{2}$a3+$\frac{3}{2}$a+1,則g′(a)=-$\frac{3}{2}$(a2-1)>0,
故f(a)-f(-1)>g($\frac{2}{3}$)>0,
故f(-1)=-1-$\frac{3}{2}$a+b=-$\frac{\sqrt{6}}{2}$,
同理可得,f(0)=b=1,
解得,a=$\frac{\sqrt{6}}{3}$,b=1;
故f(x)=x3-$\frac{\sqrt{6}}{2}$x2+1.

點評 本題考查了導(dǎo)數(shù)的綜合應(yīng)用及分類討論的思想應(yīng)用,同時考查了轉(zhuǎn)化思想與整體思想的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知平面α和兩條不重合的直線m,n,有下列四個命題:
(1)若m∥α,n?α,則m∥n
(2)若m∥α,n∥α,則m∥n
(3)若m∥n,n?α,則m∥α
(4)若m∥n,m∥α,則n∥α或n?α
上述四個命題正確的是(4)(寫序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知等差數(shù)列的{an}前n項和為Sn,且S3-2a2=3,S4=16;數(shù)列{bn}滿足b1+2b2+3b3+…+nbn=(n-1)2n+1.
(1)求數(shù)列{an},{bn}的通項公式;
(2)記cn=an+(-1)nlog2bn,數(shù)列{cn}的前n項和為Tn(n∈N*),當(dāng)n為奇數(shù)時,求Tn的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知x,y滿足$\left\{\begin{array}{l}{x-4y≤-3}\\{3x+5y≤25}\\{x≥1}\end{array}\right.$,若不等式ax-y≥1恒成立,則實數(shù)a的取值范圍是( 。
A.$[{\frac{27}{5},+∞})$B.$[{\frac{11}{5},+∞})$C.$[{\frac{3}{5},+∞})$D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知復(fù)數(shù)z滿足z(1+i)2=1-i,則復(fù)數(shù)z對應(yīng)的點在( 。┥希
A.直線y=-$\frac{1}{2}$xB.直線y=$\frac{1}{2}$xC.直線y=-$\frac{1}{2}$D.直線x=-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)數(shù)列{an}的前n項和記為Sn,且Sn=2-an,n∈N*,設(shè)函數(shù)f(x)=log${\;}_{\frac{1}{2}}$x,且滿足bn=f(an)-3.
(1)求出數(shù)列{an},{bn}的通項公式;
(2)記cn=an•bn,{cn}的前n項和為Tn,求Tn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知:如圖,平面α、β滿足α∥β,A、C∈α,B、D∈β,E∈AB,F(xiàn)∈CD,AC與BD異面,且$\frac{AE}{EB}=\frac{CF}{FD}$.求證:EF∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知cos$({\frac{π}{2}+α})$=$\frac{1}{3}$,則1-cos2α的值為( 。
A.$\frac{1}{9}$B.$\frac{2}{9}$C.$\frac{4}{9}$D.$\frac{8}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.各項為正數(shù)的等差數(shù)列{an}滿足a2•a6=21,a3+a5=10.又?jǐn)?shù)列{lgbn}的前n項和是Sn=n(n+1)lg3-$\frac{1}{2}$n(n-1).
(1)求數(shù)列{an}的通項公式;
(2)求證數(shù)列{bn}是等比數(shù)列;
(3)設(shè)cn=anbn,試求數(shù)列{cn}最大項.

查看答案和解析>>

同步練習(xí)冊答案