分析 由題意可設(shè)y=t,代入雙曲線(xiàn)方程,求得交點(diǎn)A,B,由兩點(diǎn)距離公式結(jié)合二次函數(shù)最值求法,可得最小值.
解答 解:與向量$\overrightarrow{v}$=(1,0)平行的直線(xiàn)l,
可設(shè)為y=t,
代入雙曲線(xiàn)$\frac{{x}^{2}}{4}$-y2=1,可得
x=±2$\sqrt{1+{t}^{2}}$,
則A(2$\sqrt{1+{t}^{2}}$,t),B(-2$\sqrt{1+{t}^{2}}$,t),
可得|AB|=4$\sqrt{1+{t}^{2}}$≥4,
當(dāng)t=0時(shí),|AB|取得最小值4.
故答案為:4.
點(diǎn)評(píng) 本題考查雙曲線(xiàn)的方程和應(yīng)用,同時(shí)考查向量平行的性質(zhì),以及運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{2\sqrt{3}}{3}$ | B. | -$\frac{2\sqrt{3}}{3}$ | C. | $\frac{\sqrt{14}}{3}$ | D. | -$\frac{\sqrt{14}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | -2 | C. | 2 | D. | -3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{17}{5}$ | B. | $\frac{33}{5}$ | C. | 6 | D. | $\frac{27}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com