精英家教網 > 高中數學 > 題目詳情
5.已知函數f(x)=x2-2xf′(-1),則f′(-1)=$-\frac{2}{3}$.

分析 根據函數的導數公式進行求解即可.

解答 解:∵f(x)=x2-2xf′(-1),
∴f′(x)=2x-2f′(1),
令x=-1,則 f′(-1)=-2-2f′(-1),
則f′(-1)=$-\frac{2}{3}$,
故答案為$-\frac{2}{3}$.

點評 本題主要考查函數值的計算,根據函數的導數公式進行求解是解決本題的關鍵.比較基礎.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

15.已知函數f(x)=x2+1
(1)求f(a)-f(a+1)
(2)若f(x)=x+3,求x的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

16.已知向量$\overrightarrow m=(1\;,\;\;1)$,向量$\overrightarrow n$與向量$\overrightarrow m$夾角為$\frac{3}{4}π$,且$\overrightarrow m•\overrightarrow n=-1$.
(1)求向量$\overrightarrow n$;
(2)若向量$\overrightarrow n$與向量$\overrightarrow q=(1\;,\;\;0)$的夾角為$\frac{π}{2}$,向量$\overrightarrow p=(cosA\;,\;\;2{cos^2}\frac{C}{2})$,其中A、C為△ABC的內角,且2B=A+C.求$|\overrightarrow n+\overrightarrow p|$的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.已知函數f(x)=ax2-x+2,
(1)當a=1時,當x∈[1,+∞)時,求函數$\frac{f(x)}{x}$的最小值;
(2)解關于x的不等式f(x)-2ax≤0.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.已知直線m,n與平面α、β,給出下列命題:其中正確的是( 。
A.若m∥α,n⊥β且α⊥β,則m∥nB.若m∥α,n⊥α,則m⊥n
C.若m∥α,n∥β且α∥β,則m∥nD.若α⊥β,α∩β=n,n⊥m⇒n⊥β

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.P為雙曲線$\frac{x^2}{4}-\frac{y^2}{9}=1$右支上一點,F(xiàn)1,F(xiàn)2分別為雙曲線的左右焦點,且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,直線PF2交y軸于點A,則△AF1P的內切圓半徑為( 。
A.2B.3C.$\frac{3}{2}$D.$\frac{{\sqrt{13}}}{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.已知數列{an}滿足a1=1,an+1•an=2n(n∈N*),則S2017=( 。
A.21010-1B.21010-3C.3•21008-1D.21009-3

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.函數y=(2a-1)x(x∈N+)是減函數,則a的取值范圍是( 。
A.a>1B.a<$\frac{1}{2}$C.$\frac{1}{2}$<a<1D.$\frac{1}{2}$≤a<1

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

6.若拋物線C1:y2=2px的準線為x=-1,橢圓C2:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個焦點與拋物線C1的焦點重合,且以原點為圓心,橢圓C2的短半軸長為半徑的圓與直線y=x+$\sqrt{2}$相切.
(1)求橢圓C2的離心率;
(2)若0為坐標原點,過點(2,0)的直線l與橢圓C2相交于不同兩點A、B,且橢圓C2上一點E滿足t$\overrightarrow{OE}$-$\overrightarrow{OA}$-$\overrightarrow{OB}$=$\overrightarrow{0}$,求實數t的取值范圍.

查看答案和解析>>

同步練習冊答案