若關(guān)于x的方程x2+2a•2x2-1-2a2+3=0有唯一解,則實(shí)數(shù)a的值是
 
考點(diǎn):函數(shù)的零點(diǎn)與方程根的關(guān)系
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:令f(x)=x2+2a•2x2-1-2a2+3,則函數(shù)是偶函數(shù),關(guān)于x的方程x2+2a•2x2-1-2a2+3=0有唯一解,可得f(0)=a-2a2+3=0,即可求出實(shí)數(shù)a的值.
解答: 解:令f(x)=x2+2a•2x2-1-2a2+3,則函數(shù)是偶函數(shù),
∵關(guān)于x的方程x2+2a•2x2-1-2a2+3=0有唯一解,
∴f(0)=a-2a2+3=0
∴a=
3
2
或-1,
故答案為:
3
2
或-1.
點(diǎn)評(píng):本題考查求實(shí)數(shù)a的值,考查函數(shù)的性質(zhì),比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3-x2([x]+
3
2
)+x,x∈[0,2),(其中[x]表示不大于x的最大整數(shù),如[0.1]=0,[-0.2]=-1),g(x)=kx(k≠0),若函數(shù)f(x)的圖象與函數(shù)g(x)的圖象有兩個(gè)不同的交點(diǎn),則k的取值范圍是( 。
A、(-
9
16
,-
1
2
]∪(
7
16
,
1
2
]
B、(-
1
2
,0)∪[
1
2
,1]
C、(-
1
2
,0)∪[
1
2
,1]∪{-
9
16
,
7
16
}
D、(-
1
2
,0)∪[
1
2
,1)∪{-
9
16
,
7
16
}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a∈R,且(a+i)2i為正實(shí)數(shù),則a=( 。
A、1B、0C、-1D、0或-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,矩形ABCD的邊AB=a,BC=2,PA⊥平面ABCD,PA=2,現(xiàn)有數(shù)據(jù):
①a=
3
2
;②a=1;③a=
3
;④a=2;⑤a=4;
(1)當(dāng)在BC邊上存在點(diǎn)Q,使PQ⊥QD時(shí),a可能取所給數(shù)據(jù)中的哪些值?請(qǐng)說(shuō)明理由;
(2)在滿足(1)的條件下,a取所給數(shù)據(jù)中的最大值時(shí),求直線PQ與平面ADP所成角的正值;
(3)記滿足(1)的條件下的Q點(diǎn)為Qn(n=1,2,3,…),若a取所給數(shù)據(jù)的最小值時(shí),這樣的Q有幾個(gè)?試求二面角Qn-PA-Qn+1的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l過(guò)點(diǎn)(-1,0),當(dāng)直線l與圓x2+y2=2x有兩個(gè)交點(diǎn)時(shí),其斜率k的取值范圍是( 。
A、(-
2
,
3
B、(-
2
2
C、(-1,1)
D、(-
3
3
,
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從某小區(qū)抽取100戶居民進(jìn)行月用電量調(diào)查,發(fā)現(xiàn)其用電量都在50度至350度之間,頻率分布直方圖如圖所示.

(1)根據(jù)直方圖求x的值,并估計(jì)該小區(qū)100戶居民的月均用電量(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)從該小區(qū)已抽取的100戶居民中,隨機(jī)抽取月用電量超過(guò)250度的3戶,參加節(jié)約用電知識(shí)普及講座,其中恰有ξ戶月用電量超過(guò)300度,求ξ的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某企業(yè)生產(chǎn)一種產(chǎn)品,由于受技術(shù)水平的限制,會(huì)產(chǎn)生一些次品,根據(jù)經(jīng)驗(yàn),其次品率Q與日產(chǎn)量x(萬(wàn)件)之間大體滿足關(guān)系:Q=
1
2(12-x)
,1≤x≤a
1
2
,a<x≤11
,(其中a為常數(shù),且1<a<11).
(注:次品率=次品數(shù)/生產(chǎn)量,如P=0.1表示每生產(chǎn)10件產(chǎn)品,有1件為次品,其余為合格品).已知每生產(chǎn)1萬(wàn)件合格的產(chǎn)品可以盈利2萬(wàn)元,但每生產(chǎn)1萬(wàn)件次品將虧損1萬(wàn)元.
(Ⅰ)試將生產(chǎn)這種產(chǎn)品每天的盈利額P(x)(萬(wàn)元)表示為日產(chǎn)量x(萬(wàn)件)的函數(shù);
(Ⅱ)當(dāng)日產(chǎn)量為多少時(shí),可獲得最大利潤(rùn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

動(dòng)點(diǎn)N到定點(diǎn)A(4,0)的距離等于點(diǎn)N到直線4x-3y-16=0的距離,求點(diǎn)N的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
x-1
的定義域?yàn)閇1,+∞),則f(2x-1)的定義域?yàn)?div id="fgjm4vn" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

同步練習(xí)冊(cè)答案