6.拋物線y=-$\frac{1}{4}$x2的焦點(diǎn)與準(zhǔn)線的距離為( 。
A.$\frac{1}{16}$B.$\frac{1}{8}$C.4D.2

分析 將拋物線的方程轉(zhuǎn)化成標(biāo)準(zhǔn)方程,則拋物線的焦點(diǎn)在y軸上,即2p=4,p=2,焦點(diǎn)與準(zhǔn)線的距離為p=2.

解答 解:將拋物線y=-$\frac{1}{4}$x2轉(zhuǎn)化成標(biāo)準(zhǔn)方程:x2=-4y,則拋物線的焦點(diǎn)在y軸上,即2p=4,p=2,
焦點(diǎn)(0,-1),準(zhǔn)線方程為y=1,
焦點(diǎn)與準(zhǔn)線的距離為p=2,
故選D.

點(diǎn)評(píng) 本題考查拋物線的標(biāo)準(zhǔn)方程,考查拋物線的簡(jiǎn)單幾何性質(zhì),考查拋物線焦點(diǎn)到準(zhǔn)線的距離,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知平面向量$\overrightarrow{a}$,$\overrightarrow$為單位向量,|$\overrightarrow{a}$+$\overrightarrow$|=1,則向量$\overrightarrow{a}$,$\overrightarrow$的夾角為( 。
A.$\frac{π}{6}$B.$\frac{5π}{3}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知集合A={x|x2+x-6≤0,x∈R},B={x|$\sqrt{x}$≤4,x∈Z},則A∩B=( 。
A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.用數(shù)學(xué)歸納法證明命題:1+2+3+…+n2=$\frac{{n}^{2}+{n}^{4}}{2}$時(shí),則從n=k到n=k+1左邊需增加的項(xiàng)數(shù)為( 。
A.2n-1B.2nC.2n+1D.n2-n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
(1)求角C;
(2)若$c=\sqrt{7}$,△ABC的周長(zhǎng)為$5+\sqrt{7}$,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知直線l與坐標(biāo)軸不垂直且橫、縱截距相等,圓C:(x+1)2+(y-2)2=r2,若直線l和圓C相切,且滿足條件的直線l恰好有三條,則圓的半徑r的取值集合為( 。
A.$\left\{{1,\sqrt{5}}\right\}$B.$\left\{{\sqrt{5},\frac{{\sqrt{2}}}{2}}\right\}$C.$\left\{{1,\sqrt{5},\frac{{\sqrt{2}}}{2}}\right\}$D.$\left\{{1,2,\sqrt{5},\frac{{\sqrt{2}}}{2}}\right\}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.現(xiàn)要制作一個(gè)圓錐形漏斗,其母線長(zhǎng)為t,要使其體積最大,其高為( 。
A..$\frac{1}{3}{t^2}$B.$\frac{{\sqrt{3}}}{3}t$.C..$\frac{{\sqrt{2}}}{3}t$.D..$\frac{1}{2}t$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知AB是直角△ABC的斜邊,$\overrightarrow{CA}=(2,4)$,$\overrightarrow{CB}=(-6,x)$,則x的值是( 。
A.3B.-12C.12D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.下列以x為自變量的函數(shù)中,是指數(shù)函數(shù)的是(  )
A.$\begin{array}{l}\\ y={3^x}\end{array}$B.y=(-3)xC.y=2x+1D.y=x3

查看答案和解析>>

同步練習(xí)冊(cè)答案