11.已知直線l與坐標軸不垂直且橫、縱截距相等,圓C:(x+1)2+(y-2)2=r2,若直線l和圓C相切,且滿足條件的直線l恰好有三條,則圓的半徑r的取值集合為( 。
A.$\left\{{1,\sqrt{5}}\right\}$B.$\left\{{\sqrt{5},\frac{{\sqrt{2}}}{2}}\right\}$C.$\left\{{1,\sqrt{5},\frac{{\sqrt{2}}}{2}}\right\}$D.$\left\{{1,2,\sqrt{5},\frac{{\sqrt{2}}}{2}}\right\}$

分析 當r=1,2時,符合題意,排除B,A,C,即可得出結論.

解答 解:由題意,r=1時,直線過原點,方程x=0,與x軸垂直,另外一條與圓C相切;斜率為-1,與圓C相切,有兩條,符合題意,排除B.
r=2時,直線過原點,方程y=0,與y軸垂直,另外一條與圓C相切;斜率為-1,與圓C相切,有兩條,符合題意,排除A,C.
故選D.

點評 本題考查直線與圓的位置關系,考查學生的計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

1.設函數(shù)f(x)=|x-3|+|x-a|,如果對任意x∈R,f(x)≥4,則a的取值范圍是( 。
A.(-∞,-7]∪[1,+∞)B.[-7,1]C.(-∞,-1]∪[7,+∞)D.[-1,7]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知點P(-2,3),點Q(-6,-1),則直線PQ的傾斜角為( 。
A.30°B.45°C.60°D.135°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.若向量$\overrightarrow a,\overrightarrow b$滿足$|{\overrightarrow a}|=2,|{\overrightarrow b}|=1,|{\overrightarrow a-4\overrightarrow b}|=2\sqrt{7}$,則向量$\overrightarrow a,\overrightarrow b$的夾角為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.拋物線y=-$\frac{1}{4}$x2的焦點與準線的距離為( 。
A.$\frac{1}{16}$B.$\frac{1}{8}$C.4D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.書架上有4本不同的語文書,2本不同的數(shù)學書,從中任意取出2本,能取出數(shù)學書的概率為$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.下列命題中錯誤的個數(shù)為( 。
①若p∨q為真命題,則p∧q為真命題;
②“x>5”是“x2-4x-5>0”的充分不必要條件;
③命題p:?x0∈R,x02+x0-1<0,則非p:?x∈R,x2+x-1≥0;
④命題“若x2-3x+2=0,則x=1或x=2”的逆命題為“若x≠1或x≠2,則x2-3x+2≠0”.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.《周髀算經(jīng)》記載了勾股定理的公式與證明,勾股定理相傳由商高(商代)發(fā)現(xiàn),故又有稱之為商高定理,滿足等式a2+b2=c2的正整數(shù)組(a,b,c)叫勾股數(shù),如(3,4,5)就是勾股數(shù),執(zhí)行如圖所示的程序框圖,如果輸入的數(shù)是互相不相等的正整數(shù),則下面四個結論正確的是(  )
A.輸出的數(shù)組都是勾股數(shù)B.任意正整數(shù)都是勾股數(shù)組中的一個
C.相異兩正整數(shù)都可以構造出勾股數(shù)D.輸出的結果中一定有a<b<c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.一個球的內(nèi)接正方體的表面積為54,則球的表面積為 ( 。
A.27πB.18πC.D.54π

查看答案和解析>>

同步練習冊答案