已知橢圓:上的兩點A(0,)和點B,若以AB為邊作正△ABC,當B變動時,計算△ABC的最大面積及其條件.
B點移動到(0,-)時,△ABC的面積最大,且最大值為3
題意可設B(2cosθ, sinθ),

因為SABC=·=·  =·
所以當=-1時,即B點移動到(0,-)時,△ABC的面積最大,且最大值為3
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系中,O為坐標原點,已知兩點M(1,—3)、N(5,1),若動點C滿足交于A、B兩點。
(I)求證:
(2)在x軸上是否存在一點,使得過點P的直線l交拋物線于D、E兩點,并以線段DE為直徑的圓都過原點。若存在,請求出m的值,若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

直線與橢圓交于AB兩點,記△ABO的面積為S

(1)   求在k = 0,0 < b < 1的條件下,S的最大值;
(2)   當 | AB | = 2,S = 1時,求直線AB的方程.
 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知,則當取最小值時,橢圓的離心率是(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在直角坐標系中,已知一個圓心在坐標原點,半徑為2的圓,從這個圓上任意一點Py軸作垂線段PP′,P′為垂足.
(1)求線段PP′中點M的軌跡C的方程;
(2)過點Q(-2,0)作直線l與曲線C交于A、B兩點,設N是過點,且以為方向向量的直線上一動點,滿足O為坐標原點),問是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在面積為9的中,,且,F(xiàn)建立以A點為坐標原點,以的平分線所在直線為x軸的平面直角坐標系,如圖所示。
(1)求AB、AC所在的直線方程;
(2)求以AB、AC所在的直線為漸近線且過點D的雙曲線的方程;
(3)過D分別作AB、AC所在直線的垂線DF、DE(E、F為垂足),求的值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓
的公共弦過橢圓的右焦點。
⑴當軸時,求的值,并判斷拋物線的焦點是否在直線上;
⑵若,且拋物線的焦點在直線上,求的值及直線AB的方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

1,3,5

 
已知雙曲線的左、右焦點分別是F1、F2.

(1)求雙曲線上滿足的點P的坐標;
(2)橢圓C2的左、右頂點分別是雙曲線C1的左、右焦點,橢圓C2的左、右焦點分別是雙曲線C1的左、右頂點,若直線與橢圓恒有兩個不同的交點AB,且(其中O為坐標原點),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知雙曲線的左、右焦點分別為,其一條漸近線方程為,點在該雙曲線上,則

查看答案和解析>>

同步練習冊答案