19.已知過點M(1,1)的直線l與圓(x+1)2+(y-2)2=5相切,且與直線ax+y-1=0垂直,則實數(shù)a=$\frac{1}{2}$;直線l的方程為2x-y-1=0.

分析 由題意判斷點在圓上,求出M與圓心連線的斜率,可得a的值,與直線l的方程.

解答 解:因為點M(1,1)滿足圓(x+1)2+(y-2)2=5的方程,所以M在圓上,
又過點M(1,1)的直線l與圓(x+1)2+(y-2)2=5相切,且與直線ax+y-1=0垂直,
所以切點與圓心連線與直線ax+y-1=0平行,
所以直線ax+y-1=0的斜率為:-a=$\frac{2-1}{-1-1}$=-$\frac{1}{2}$,所以a=$\frac{1}{2}$.
直線l的方程為y-1=2(x-1),即2x-y-1=0
故答案為:$\frac{1}{2}$,2x-y-1=0.

點評 本題考查直線與圓的位置關系,直線與直線的垂直,考查轉化數(shù)學與計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

10.函數(shù)f(x)=2arccos(2-x)的值域是[$\frac{π}{3}$,2π],求此函數(shù)的定義域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點分別為E,F(xiàn),以OF(O為坐標原點)為直徑的圓C角雙曲線于A,B兩點,AE與圓C相切,則該雙曲線的離心率為( 。
A.$\frac{\sqrt{2}+3\sqrt{6}}{2}$B.$\frac{2\sqrt{2}+\sqrt{6}}{2}$C.$\frac{3\sqrt{2}+\sqrt{6}}{2}$D.$\frac{3\sqrt{2}+2\sqrt{6}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知向量$\overrightarrow a,\overrightarrow b$滿足$|{\overrightarrow a}|=|{\overrightarrow b}$|=2,且($\overrightarrow a$+2$\overrightarrow b$)•($\overrightarrow a$-$\overrightarrow b$)=-2,則向量$\overrightarrow a$與$\overrightarrow b$的夾角為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.執(zhí)行如圖所示程序框圖,則輸出的結果是(  )
A.$\frac{1}{6}$B.$\frac{3}{4}$C.$\frac{9}{10}$D.$\frac{11}{12}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知函數(shù)f(x)=-x2-x+2,則函數(shù)y=f(-x)的圖象為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知全集U=R,A=$\left\{{x\left|{\left.{\frac{x+1}{2-x}≥0}\right\}}\right.}$,B={x|lnx<0},則A∪B=( 。
A.{x|-1≤x≤2}B.{x|-1≤x<2}C.{x|x<-1或x≥2}D.{x|0<x<2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知拋物線C:y2=2px(p>0)的焦點F到雙曲線$\frac{x^2}{3}$-y2=1的漸近線的距離為l,過焦點F且斜率為k的直線與拋物線C交于A,B兩點,若$\overrightarrow{AF}$=2$\overrightarrow{FB}$,則|k|=( 。
A.$\frac{{2\sqrt{2}}}{3}$B.$2\sqrt{2}$C.$\frac{{\sqrt{2}}}{4}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知復數(shù)z滿足(z+1)(1-i)=1+i,則復數(shù)z的共軛復數(shù)為( 。
A.1+iB.1-iC.-1+iD.-1-i

查看答案和解析>>

同步練習冊答案