7.已知向量$\overrightarrow a,\overrightarrow b$滿足$|{\overrightarrow a}|=|{\overrightarrow b}$|=2,且($\overrightarrow a$+2$\overrightarrow b$)•($\overrightarrow a$-$\overrightarrow b$)=-2,則向量$\overrightarrow a$與$\overrightarrow b$的夾角為$\frac{π}{3}$.

分析 由向量的平方即為模的平方,可得$\overrightarrow{a}$•$\overrightarrow$=2,再由向量的夾角公式,計算即可得到所求值.

解答 解:由$|{\overrightarrow a}|=|{\overrightarrow b}$|=2,且($\overrightarrow a$+2$\overrightarrow b$)•($\overrightarrow a$-$\overrightarrow b$)=-2,
可得$\overrightarrow{a}$2+$\overrightarrow{a}$•$\overrightarrow$-2$\overrightarrow$2=-2,
即為4+$\overrightarrow{a}$•$\overrightarrow$-8=-2,
解得$\overrightarrow{a}$•$\overrightarrow$=2,
即有cos<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}|•|\overrightarrow|}$=$\frac{2}{2×2}$=$\frac{1}{2}$,
由0≤<$\overrightarrow{a}$,$\overrightarrow$>≤π,
可得<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{π}{3}$.
故答案為:$\frac{π}{3}$.

點評 本題考查向量的數(shù)量積的定義和性質(zhì),主要是向量的平方即為模的平方,同時考查向量的夾角公式,考查運算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.給出如表中的算法語句,若輸入的x的值為12,則輸出的y為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)f(x)=ax3+3ax2+1,g(x)=ex(e=2.71828…是自然對數(shù)的底數(shù)),f′(x)是f(x)的導(dǎo)數(shù).
(Ⅰ)當a>0時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當a<0時,若函數(shù)f′(x)與g(x)的圖象都與直線l相切于點P(x0,y0),求實數(shù)x0的值;
(Ⅲ)求證:當a≤-1時,函數(shù)f(x)與g(x)的圖象在(-2,0)上有公共點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.閱讀如圖所示的程序框圖,運行相應(yīng)的程序.若輸入的n=3,則輸出的結(jié)果為( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知i是虛數(shù)單位,復(fù)數(shù)z滿足$\frac{1+2i}{z}$=i,則z在復(fù)平面上對應(yīng)的點位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=2sin(ωx+φ)(ω<0,-π<φ<π)的部分圖象如圖所示.
(1)求f(x)的表達式;
(2)求函數(shù)f(x)在區(qū)間$[\frac{3π}{2},2π]$上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知過點M(1,1)的直線l與圓(x+1)2+(y-2)2=5相切,且與直線ax+y-1=0垂直,則實數(shù)a=$\frac{1}{2}$;直線l的方程為2x-y-1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)y=Asin(ωx+φ)(ω>0,-π≤φ<π)的圖象如圖所示,則φ的值為(  
A.0B.-$\frac{5π}{6}$C.$\frac{5π}{6}$D.-$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知a=log43,b=ln3,c=10${\;}^{\frac{1}{2}}$,則( 。
A.a<b<cB.b<c<aC.c<a<bD.c<b<a

查看答案和解析>>

同步練習(xí)冊答案