A. | ${a_n}={2^{2n-3}}$ | B. | ${a_n}={2^{5-2n}}$ | ||
C. | ${a_n}={2^{2n-5}}$ | D. | ${a_n}={2^{2n-3}}$或${a_n}={2^{5-2n}}$ |
分析 設數(shù)列{an}的首項為a1,公比為q,則log2a1+log2a2+log2a3=3,從而a1a2a3=8,進而a2=2.由b1b2b3=-3,得log2a1•log2a2•log2a3=-3,從而log2a1•log2a3=-3,進而(log2a2-log2q)(log2a2+log2q)=-3,解得q=4,${a}_{1}=\frac{{a}_{2}}{q}=\frac{1}{2}$,由此能求出結果.
解答 解:設數(shù)列{an}的首項為a1,公比為q,
∵b1+b2+b3=3,∴l(xiāng)og2a1+log2a2+log2a3=3,
∴l(xiāng)og2(a1a2a3)=3,∴a1a2a3=8,∴a2=2.
∵b1b2b3=-3,∴l(xiāng)og2a1•log2a2•log2a3=-3,
∴l(xiāng)og2a1•log2a3=-3,
∴${log_2}\frac{a_2}{q}•{log_2}({a_2}•q)=-3$,
即(log2a2-log2q)(log2a2+log2q)=-3,
即(1-log2q)(1+log2q)=-3,解得log2q=±2,
又∵q>1,∴l(xiāng)og2q=2,解得q=4,${a}_{1}=\frac{{a}_{2}}{q}=\frac{1}{2}$,
∴${a}_{n}=\frac{1}{2}×{4}^{n-1}={2}^{2n-3}$.
故選:A.
點評 本題考查數(shù)列的通項公式的求法,考查等比數(shù)列、對數(shù)性質及運算法則等基礎知識,考查推理論證能力、運算求解能力,考查化歸與轉化思想、函數(shù)與方程思想,是中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (9,25) | B. | (3,7) | C. | (9,49) | D. | (13,49) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a∈(0,3) | B. | a∈(-∞,3] | C. | a∈(3,+∞) | D. | a∈[3,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $5-2\sqrt{2}$ | B. | $\sqrt{5-2\sqrt{2}}$ | C. | $6-3\sqrt{2}$ | D. | $\sqrt{6-3\sqrt{2}}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com