精英家教網 > 高中數學 > 題目詳情

【題目】如圖,過橢圓Eab0)的左焦點F1x軸的垂線交橢圓EPQ兩點,點A,B是橢圓E的頂點,且ABOP,F2為右焦點,△PF2Q的周長為8

1)求橢圓E的方程;

2)過點F1作直線l與橢圓E交于C,D兩點,若△OCD的面積為,求直線l的方程.

【答案】(1);(2)

【解析】

1)由題意,三角形的周長求出的值,再由ABOP,直線的斜率相等及ac,b之間的關系求出橢圓的方程;
2)設直線l的方程與橢圓聯立,求出兩根之和及兩根之積,進而求出兩根之差的絕對值,求出面積,再由橢圓求出直線方程.

1)由題意得:4a8,a2,且,a2b2+c2b22,

所以橢圓的方程:;

2)顯然直線l的斜率不為零,

l的方程為:xmy,Cxy),Dx'y'),

聯立與橢圓的方程得:(2+m2y22my10,y+y',yy'

SOCD|OF1||yCyD|2,

∴由題意得:,整理得:5m434m270,

解得m27,所以m,

所以直線l的方程為:xy

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)求函數的單調區(qū)間和零點;

(2)若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(Ⅰ)當時,討論函數的單調區(qū)間;

(Ⅱ)若對任意的恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ex(x﹣a)2+4.

(1)若f(x)在(﹣∞,+∞)上單調遞增,求a的取值范圍;

(2)若x≥0,不等式f(x)≥0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2019年春節(jié)期間,我國高速公路繼續(xù)執(zhí)行“節(jié)假日高速免費政策”.某路橋公司為掌握春節(jié)期間車輛出行的高峰情況,在某高速收費點處記錄了大年初三上午9:2010:40這一時間段內通過的車輛數,統計發(fā)現這一時間段內共有600輛車通過該收費點,它們通過該收費點的時刻的頻率分布直方圖如圖所示,其中時間段9:20940記作區(qū)間9:4010:00記作,10:0010:20記作10:2010:40記作.比方:1004分,記作時刻64.

1)估計這600輛車在9:2010:40時間段內通過該收費點的時刻的平均值(同一組中的數據用該組區(qū)間的中點值代表);

2)為了對數據進行分析,現采用分層抽樣的方法從這600輛車中抽取10輛,再從這10輛車中隨機抽取4輛,記9:2010:00之間通過的車輛數,求的分布列與數學期望;

3)由大數據分析可知,車輛在春節(jié)期間每天通過該收費點的時刻服從正態(tài)分布,其中可用這600輛車在9:2010:40之間通過該收費點的時刻的平均值近似代替,可用樣本的方差近似代替(同一組中的數據用該組區(qū)間的中點值代表),已知大年初五全天共有1000輛車通過該收費點,估計在9:4610:40之間通過的車輛數(結果保留到整數).

參考數據:若,則,,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某中學為了組建一支業(yè)余足球隊,在高一年級隨機選取50名男生測量身高,發(fā)現被測男生的身高全部在之間,將測量結果按如下方式分成六組:第1,第2,,第6,如圖是按上述分組得到的頻率分布直方圖,以頻率近似概率.

1)若學校要從中選1名男生擔任足球隊長,求被選取的男生恰好在第5組或第6組的概率;

2)試估計該校高一年級全體男生身高的平均數(同一組中的數據用該組區(qū)間的中點值代表)與中位數;

3)現在從第5與第6組男生中選取兩名同學擔任守門員,求選取的兩人中最多有1名男生來自第5組的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓在左、右焦點分別為,,上頂點為點,若是面積為的等邊三角形.

1)求橢圓的標準方程;

2)已知,是橢圓上的兩點,且,求使的面積最大時直線的方程(為坐標原點).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐的底面是正方形,側棱底面,過垂直點,作垂直點,平面點,點上一動點,且,.

1)試證明不論點在何位置,都有

2)求的最小值;

3)設平面與平面的交線為,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)若在定義域上不單調,求的取值范圍;

(2)設分別是的極大值和極小值,且,求的取值范圍.

查看答案和解析>>

同步練習冊答案