7.已知向量$\overrightarrow a$=(2,3),$\overrightarrow b$=(-4,7),則$\overrightarrow a$在$2\sqrt{3}\overrightarrow b$方向上的射影為(  )
A.$\sqrt{13}$B.$\frac{{\sqrt{13}}}{5}$C.$\sqrt{65}$D.$\frac{{\sqrt{65}}}{5}$

分析 根據(jù)向量投影影的定義,$\overrightarrow a$在$2\sqrt{3}\overrightarrow b$方向上的射影即可.

解答 解:因為$\overrightarrow a=(2,3),\overrightarrow b=(-4,7)$,
所以$|{\overrightarrow a}|=\sqrt{13},|{\overrightarrow b}|=\sqrt{65},\overrightarrow a•\overrightarrow b=13$,則$|{\overrightarrow a}|cosθ=\frac{{\sqrt{65}}}{5}$,
則$\overrightarrow a$在$\overrightarrow b$方向上的射影既是$\overrightarrow a$在$2\sqrt{3}\overrightarrow b$方向上的射影為$\frac{{\sqrt{65}}}{5}$,
故選:D

點評 本題考查了平面向量中一向量在另一向量方向上的投影的定義的應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

17.(1)已知x∈R,m=x2-1,n=2x+2.求證:m,n中至少有一個是非負數(shù).
(2)已知a,b,c均為正實數(shù),且a+b+c=1,求證:($\frac{1}{a}$-1)($\frac{1}$-1)($\frac{1}{c}$-1)≥8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知冪函數(shù)f(x)=k•xα的圖象經(jīng)過點(${\frac{1}{2}$,$\frac{{\sqrt{2}}}{2}}$),則k-α=(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.“奶茶妹妹”對某時間段的奶茶銷售量及其價格進行調查,統(tǒng)計出售價x元和銷售量y杯之間的一組數(shù)據(jù)如表所示:
價格x55.56.57
銷售量y121064
通過分析,發(fā)現(xiàn)銷售量y對奶茶的價格x具有線性相關關系.
(Ⅰ)求銷售量y對奶茶的價格x的回歸直線方程;
(Ⅱ)已知一杯奶茶的成本價為3元,根據(jù)(Ⅰ)中價格對銷量的預測,為了獲得最大利潤,“奶茶妹妹”應該將奶茶的售價大約定為多少比較合理?
注:在回歸直線y=$\hat b$x+$\hat a$中,$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-,{\overline{x}}^{2}}$,$\hat a$=$\overline y$-$\hat b$$\overline x$.$\sum_{i=1}^4{{x_i}^2}$=52+5.52+6.52+72=146.5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.在△ABC中角A、B、C所對的邊分別為a、b、c,已知a=5,b=7,cosC=$\frac{1}{7}$,$\overrightarrow{AB}$在$\overrightarrow{BC}$方向上的投影為-4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知i是虛數(shù)單位,復數(shù)z=-1+3i,則復數(shù)z的模|z|=$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.在山頂鐵塔上B處測得地面上一點A的俯角α=54°40′,在塔底C處測得A處的俯角β=50°1′.已知鐵塔BC部分的高為27.3m,求出山高CD(精確到1m).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=2sin(-2x-$\frac{2π}{3}$).
(I)當x∈(0,$\frac{π}{3}$)時,求函數(shù)f(x)的值域.
(II)求f(x)的單調遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知$P:|5x-2|>3,q:\frac{1}{{{x^2}+4x-5}}>0$,則?P是?q的什么條件?

查看答案和解析>>

同步練習冊答案