7.已知$P:|5x-2|>3,q:\frac{1}{{{x^2}+4x-5}}>0$,則?P是?q的什么條件?

分析 求出關(guān)于p,q為真時的x的范圍,從而求出?P和?q的關(guān)系即可.

解答 解:由|5x-2|>3,解得:x>1或x<-$\frac{1}{5}$,
故p為真時:x>1或x<-$\frac{1}{5}$,
¬p:-$\frac{1}{5}$≤x≤1;
由$\frac{1}{{x}^{2}+4x-5}$>0,解得:x>1或x<-5,
故q為真時:x>1或x<-5,
¬q:-5≤x≤1,
故¬p是¬q的充分不必要條件.

點評 本題考查了充分必要條件,考查不等式問題,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知向量$\overrightarrow a$=(2,3),$\overrightarrow b$=(-4,7),則$\overrightarrow a$在$2\sqrt{3}\overrightarrow b$方向上的射影為(  )
A.$\sqrt{13}$B.$\frac{{\sqrt{13}}}{5}$C.$\sqrt{65}$D.$\frac{{\sqrt{65}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知定義在R上的函數(shù)f(x)的圖象關(guān)于y軸對稱,且滿足f(x+2)=f(-x).若當(dāng)x∈[0,1]時,f(x)=3x-1
,則f(log${\;}_{\frac{1}{3}}$10)的值為( 。
A.3B.$\frac{10}{9}$C.$\frac{2}{3}$D.$\frac{10}{27}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若集合P={x|1≤x<2},Q={1,2,3},則P∩Q=(  )
A.{1,2}B.{1}C.{2,3}D.{1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知復(fù)數(shù)z=2+i,則$\frac{{z}^{2}-2z}{z-1}$=(  )
A.$\frac{1}{2}+\frac{3}{2}$iB.-$\frac{1}{2}-\frac{3}{2}$iC.-$\frac{1}{2}-\frac{1}{2}$iD.$\frac{1}{2}+\frac{1}{2}i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖1,梯形AECD中,AE∥CD,點B為邊AE上一點,CB⊥BA,$AB=2CD=2BC=\sqrt{2}BE=2$,把△BCE沿邊BC翻折成圖2,使∠EBA=45°.

(1)求證:BD⊥EC;
(2)求平面ADE與平面CDE所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若x,y滿足約束條件$\left\{{\begin{array}{l}{x-y+1≤0}\\{x-2y≤0}\\{x+2y-2≤0}\end{array}}\right.$,則$\frac{y}{x-1}$的最小值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.點集$M=\left\{{({x,y})\left|{\left\{\begin{array}{l}x=3cosθ\\ y=3sinθ\end{array}\right.θ是參數(shù),0<θ<π}\right.}\right\}$,N={(x,y)|y=x+b},若M∩N≠∅,則b應(yīng)滿足( 。
A.$-3\sqrt{2}≤b≤3\sqrt{2}$B.$-3\sqrt{2}<b<-3$C.$0≤b≤3\sqrt{2}$D.$-3<b≤3\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.ω是正實數(shù),設(shè)Sω={θ|f(x)=cos[ω(x+θ)]是奇函數(shù)},若對每個實數(shù)a,Sω∩(a,a+1)的元素不超過2個,且有a使Sω∩(a,a+1)含2個元素,則ω的取值范圍是( 。
A.(π,2π]B.[π,2π)C.(2π,3π]D.[2π,3π)

查看答案和解析>>

同步練習(xí)冊答案