16.已知i是虛數(shù)單位,z=$\frac{2-i}{2+i}-{i^{2016}}$,且z的共軛復(fù)數(shù)為$\overline z$,則$\overline z$在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 直接由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡復(fù)數(shù)z,求出z的共軛復(fù)數(shù)$\overline z$,進(jìn)一步求出$\overline z$在復(fù)平面內(nèi)對應(yīng)的點(diǎn)的坐標(biāo),則答案可求.

解答 解:∵z=$\frac{2-i}{2+i}-{i^{2016}}$=$\frac{(2-i)(2-i)}{(2+i)(2-i)}-({i}^{4})^{504}=\frac{3-4i}{5}-1$=$-\frac{2}{5}-\frac{4}{5}i$,
又z的共軛復(fù)數(shù)為$\overline z$,
∴$\overline{z}=-\frac{2}{5}+\frac{4}{5}i$.
則$\overline z$在復(fù)平面內(nèi)對應(yīng)的點(diǎn)的坐標(biāo)為:($-\frac{2}{5}$,$\frac{4}{5}$),位于第二象限.
故選:B.

點(diǎn)評 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)y=$\sqrt{3}$sinx-cosx的振幅和頻率分別為(  )
A.$\sqrt{3}$,$\frac{1}{π}$B.2,$\frac{1}{2π}$C.$\sqrt{3}$,πD.2,2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知關(guān)于x的不等式|ax-1|+a|x-1|≥1(a>0).
(1)當(dāng)a=1時,求此不等式的解集;
(2)若此不等式的解集是R,求正實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.如圖,圓O是四邊形ABQC的外接圓,其直徑為4,PA垂直圓O所在的平面,PA=4,則四棱錐P-ABQC外接球的表面積為32π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知等差數(shù)列{an}的公差d∈(0,1),且$\frac{{{{sin}^2}{a_3}-{{sin}^2}{a_7}}}{{sin({a_3}+{a_7})}}$=-1,若a1∈(-$\frac{5π}{4}$,-$\frac{9π}{8}$)時,則數(shù)列{an}的前n項和為Sn取得最小值時n的值為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)△ABC的內(nèi)角A,B,C的對邊分別是a,b,c,且(a2+b2-c2)sinA=ab(sinC+2sinB),a=1.
(1)求角A的大。
(2)求△ABC的周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,-π<φ<0)的最小正周期是π,將函數(shù)f(x)的圖象向左平移$\frac{π}{3}$個單位長度后所得的函數(shù)圖象過點(diǎn)P(0,1),則函數(shù)f(x)=sin(ωx+φ)( 。
A.在區(qū)間[-$\frac{π}{6},\frac{π}{3}$]上單調(diào)遞減B.在區(qū)間[-$\frac{π}{6},\frac{π}{3}$]上單調(diào)遞增
C.在區(qū)間[-$\frac{π}{3},\frac{π}{6}$]上單調(diào)遞減D.在區(qū)間[-$\frac{π}{3},\frac{π}{6}$]上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.判斷下列函數(shù)的奇偶性:
(1)f(x)=x2-2x;
(2)f(x)=x3+$\frac{1}{x}$;
(3)f(x)=$\sqrt{1-{x}^{2}}$+$\sqrt{{x}^{2}-1}$;
(4)f(x)=2-|x|;
(5)f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x+3(x>0)}\\{0(x=0)}\\{-{x}^{2}-2x-3(x<0)}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{x-1}{ax}$-lnx(a≠0).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)a=l時,求f(x)在區(qū)間[$\frac{1}{2}$,2]上的最大值和最小值(0.69<ln 2<0.70);
(3)求證ln$\frac{{e}^{2}}{x}$≤$\frac{1+x}{x}$.

查看答案和解析>>

同步練習(xí)冊答案