11.已知2x+3y+4z=10,求x2+y2+z2的最小值.

分析 法1:本題可先利用三個變量x,y,z的關(guān)系消去一個變量,如消去x,得到兩個變量y,z,再通過配方,利用完全平方非負,得到所求代數(shù)式的最小值.
法2:利用柯西不等式進行求解.

解答 解:法1:∵2x+3y+4z=10,
∴$x=5-\frac{3}{2}y-2x$.
∴x2+y2+z2
=$(5-\frac{3}{2}y-2z)^{2}+{y}^{2}+{z}^{2}$
=$\frac{13}{4}{y}^{2}+5{z}^{2}+6zy-15y-20x+25$
=$\frac{13}{4}{y}^{2}+(6z-15)y+5{z}^{2}-20z+25$
=$\frac{13}{4}[y+\frac{2(6z-15)}{13}]^{2}+\frac{29}{13}{z}^{2}-\frac{80}{13}z+\frac{100}{13}$
=$\frac{13}{4}(y+\frac{12z-30}{13})^{2}+\frac{29}{13}(z-\frac{40}{29})^{2}+\frac{100}{29}$
$≥\frac{100}{29}$.
法2:由柯西不等式可得,(2x+3y+4z)2≤(x2+y2+z2)(22+32+42),
由條件可得,x2+y2+z2≥$\frac{100}{29}$.
 故最小值為$\frac{100}{29}$.

點評 本題考查的是函數(shù)最值的求法,主要通過消元和配方解決問題,也可以是利用柯西不等式進行求解.考查學生的轉(zhuǎn)化能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

1.邊長為2的正方形ABCD所在的平面與△CDE所在的平面交于CD,且AE⊥平面CDE,AE=1.
(Ⅰ)求證:平面ABCD⊥平面ADE;
(Ⅱ)設(shè)點F是棱BC上一點,若二面角A-DE-F的余弦值為$\frac{{\sqrt{10}}}{10}$,試確定點F在BC上的位置.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.某小學為迎接校運動會的到來,在三年級招募了16名男志愿者和14名女志愿者.調(diào)查發(fā)現(xiàn),男、女志愿者中分別各有10人和6人喜歡運動,其他人員不喜歡運動.
(Ⅰ)根據(jù)以上數(shù)據(jù)完成以下2×2列聯(lián)表:
喜歡運動不喜歡運動總計
a=b=
c=d=
總計n=
(Ⅱ)判斷性別與喜歡運動是否有關(guān),并說明理由.
(Ⅲ)如果喜歡運動的女志愿者中恰有4人懂得醫(yī)療救護,現(xiàn)從喜歡運動的女志愿者中抽取2名負責醫(yī)療救護工作,求抽出的2名志愿者都懂得醫(yī)療救護的概率.
附:${Χ^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}({n=a+b+c+d})$
臨界值表(部分):
P(χ2≥x00.0500.0250.0100.001
x03.8415.0246.63510.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.某四面體的三視圖如圖所示,則該四面體的體積是( 。
A.2B.8C.$\frac{8}{3}$D.$\frac{16}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.同步通訊衛(wèi)星B定位于地球赤道上一點C的上空,且與地面的距離等于地球的半徑,點C與地球上某點A在同一條子午線上,若A點的緯度60°,則從A點看B點的結(jié)果是( 。
A.在地平線上B.仰角為30°C.仰角為45°D.仰角為60°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知函數(shù)f(x)=x2-2ln|x|與g(x)=sin(ωx+φ)有兩個公共點,則在下列函數(shù)中滿足條件的周期最大的g(x)=( 。
A.sin(2πx-$\frac{π}{2}$)B.sin($\frac{π}{2}$x-$\frac{π}{2}$)C.sin(πx-$\frac{π}{2}$)D.sin(πx+$\frac{π}{2}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.設(shè)有半徑為4km的圓形村落,A,B兩人同時從村落中心出發(fā),B向北直行,A先向東直行,出村后不久,改變前進方向,沿著與村落周界相切的直線前進,后來恰與B相遇.設(shè)A,B兩人速度一定,其速度比為4:1,問兩人在何處相遇?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知直三棱柱ABC-A1B1C1的所有頂點都在球O的球面上,AA1=2$\sqrt{3}$,∠BAC=30°,BC=1,則球O的體積為( 。
A.$\frac{20}{3}π$B.$\frac{25}{3}π$C.$\frac{28}{3}π$D.$\frac{32}{3}π$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知等差數(shù)列{an}中,an≠0(n∈N ),若對任意的n≥2有an-1+an+1-${a}_{n}^{2}$=0且S2m-1=38,則m等于10.

查看答案和解析>>

同步練習冊答案