20.已知直三棱柱ABC-A1B1C1的所有頂點(diǎn)都在球O的球面上,AA1=2$\sqrt{3}$,∠BAC=30°,BC=1,則球O的體積為( 。
A.$\frac{20}{3}π$B.$\frac{25}{3}π$C.$\frac{28}{3}π$D.$\frac{32}{3}π$

分析 畫出球的內(nèi)接直三棱ABC-A1B1C1,作出球的半徑,然后可求球的體積.

解答 解:如圖,連接上下底面中心,O為PQ的中點(diǎn),OP⊥平面ABC,則球的半徑為OA,
∵∠BAC=30°,BC=1,在△ABC中,由正弦定理可得,
∴2r=AP=$\frac{BC}{sin∠BAC}$=$\frac{1}{sin30°}$=2,
∴r=1
∵AA1=2$\sqrt{3}$,
∴OP=$\sqrt{3}$,
∴OA=$\sqrt{1+3}$=2
所以球的體積為:$\frac{4}{3}π•{2}^{3}$=$\frac{32}{3}$π
故選D.

點(diǎn)評 本題考查球的體積和表面積,球的內(nèi)接體問題,考查學(xué)生空間想象能力和理解能力,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)$f(x)=alnx+\frac{{2{a^2}}}{x}+x(a∈R)$.
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)若對任意m,n∈(0,e)且m≠n,有$\frac{f(m)-f(n)}{m-n}<1$恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知2x+3y+4z=10,求x2+y2+z2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.蘇州市舉辦“廣電狂歡購物節(jié)”促銷活動,某廠商擬投入適當(dāng)?shù)膹V告費(fèi),對所售產(chǎn)品進(jìn)行促銷,經(jīng)調(diào)查測算,該促銷產(chǎn)品在狂歡購物節(jié)的銷售量p萬件與廣告費(fèi)用 x萬元滿足p=3-$\frac{2}{x+1}$(其中 0≤x≤a,a為正常數(shù)).已知生產(chǎn)該批產(chǎn)品 p萬件還需投入成本(10+2p)萬元(不含廣告費(fèi)用),產(chǎn)品的銷售價(jià)格定為(4+$\frac{20}{p}}$)元/件,假定廠商生產(chǎn)的產(chǎn)品恰好能夠售完.
(1)將該產(chǎn)品的利潤y萬元表示為廣告費(fèi)用x萬元的函數(shù);
(2)問廣告費(fèi)投入多少萬元時(shí),廠商的利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.移動公司為了了解4G用戶的使用情況,隨機(jī)抽取了60名男手機(jī)用戶,50名女手機(jī)用戶,統(tǒng)計(jì)數(shù)據(jù)如表所示,試確定是否為4G用戶與性別有關(guān)的把握約為(  )
使用4G未使用4G總計(jì)
男用戶402060
女用戶203050
總計(jì)6050110
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.
P( K2≥k00.5000.1000.0500.0100.001
k00,4552,7063.8416.63510.828
A.90%B.95%C.99%D.99.9%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知某幾何體的三視圖如圖所示,則幾何體的體積為( 。
A.$\frac{2π}{3}$+$\frac{1}{6}$B.$\frac{π}{3}$+$\frac{1}{3}$C.$\frac{π}{3}$+$\frac{1}{6}$D.$\frac{\sqrt{2}π}{6}$+$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=$\frac{1+x}{1-x}$e-ax,若對任意x∈(0,1),恒有f(x)>1,則實(shí)數(shù)a的取值范圍為( 。
A.(-∞,2]B.(-∞,0]C.[0,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.?dāng)?shù)列{an},{bn}的通項(xiàng)公式是an=2n,bn=3n+2,它們公共項(xiàng)由小到大排列構(gòu)成數(shù)列{cn}.
(1)寫出數(shù)列{cn}的前5項(xiàng);
(2)判斷數(shù)列{cn}是否為等比數(shù)列,如果是,請給出證明,如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.命題“?x∈R,使得x2-1<0”的否定是“?x∈R,均有x2-1≥0”.

查看答案和解析>>

同步練習(xí)冊答案