【題目】對(duì)于定義在上的函數(shù),若函數(shù)滿(mǎn)足:①在區(qū)間上單調(diào)遞減;②存在常數(shù)p,使其值域?yàn)?/span>,則稱(chēng)函數(shù)漸近函數(shù);

1)證明:函數(shù)是函數(shù)的漸近函數(shù),并求此時(shí)實(shí)數(shù)p的值;

2)若函數(shù),證明:當(dāng)時(shí),不是的漸近函數(shù).

【答案】1)證明見(jiàn)解析,;(2)證明見(jiàn)解析;

【解析】

1)通過(guò)令,利用漸近函數(shù)的定義逐條驗(yàn)證即可;(2)通過(guò)記,結(jié)合漸近函數(shù)的定義可知,問(wèn)題轉(zhuǎn)化為求時(shí),的最大值問(wèn)題,進(jìn)而計(jì)算可得的范圍,從而證明結(jié)論.

1)根據(jù)題意,令,

,

所以,

所以在區(qū)間上單調(diào)遞減,且,

所以,

于是函數(shù)是函數(shù)的漸近函數(shù),

此時(shí)實(shí)數(shù).

2)即,

,

假設(shè)函數(shù)的漸近函數(shù)是,

則當(dāng)時(shí),,即,

令函數(shù),

,

當(dāng)時(shí),

當(dāng)時(shí),,在區(qū)間上單調(diào)遞增,

所以

所以,

所以當(dāng)時(shí),不是的漸近函數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)若存在兩個(gè)極值點(diǎn),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),,其中m是不等于零的常數(shù).

1時(shí),直接寫(xiě)出的值域;

2)求的單調(diào)遞增區(qū)間;

3)已知函數(shù),,定義:,,,其中,表示函數(shù)上的最小值,表示函數(shù)上的最大值.例如:,,則,,,.當(dāng)時(shí),恒成立,求n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,函數(shù).

1是函數(shù)數(shù)的導(dǎo)函數(shù),記,若在區(qū)間上為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍;

(2)設(shè)實(shí)數(shù),求證:對(duì)任意實(shí)數(shù),總有成立.

附:簡(jiǎn)單復(fù)合函數(shù)求導(dǎo)法則為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)是橢圓上任一點(diǎn),點(diǎn)到直線(xiàn)的距離為,到點(diǎn)的距離為,且,若直線(xiàn)與橢圓交于不同兩點(diǎn)、都在軸上方),且.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)當(dāng)為橢圓與軸正半軸的交點(diǎn)時(shí),求直線(xiàn)的方程;

3)對(duì)于動(dòng)直線(xiàn),是否存在一個(gè)定點(diǎn),無(wú)論如何變化,直線(xiàn)總經(jīng)過(guò)此定點(diǎn)?若存在,求出定點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列的前項(xiàng)和為,并且,,數(shù)列滿(mǎn)足:,,記數(shù)列的前項(xiàng)和為

1)求數(shù)列的通項(xiàng)公式及前項(xiàng)和公式

2)求數(shù)列的通項(xiàng)公式及前項(xiàng)和公式;

3)記集合,若的子集個(gè)數(shù)為16,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人同時(shí)參加一次數(shù)學(xué)測(cè)試,共有道選擇題,每題均有個(gè)選項(xiàng),答對(duì)得分,答錯(cuò)或不答得分.甲和乙都解答了所有的試題,經(jīng)比較,他們只有道題的選項(xiàng)不同,如果甲最終的得分為分,那么乙的所有可能的得分值組成的集合為____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若動(dòng)點(diǎn)到定點(diǎn)與定直線(xiàn)的距離之和為4.

(1)求點(diǎn)的軌跡方程,并畫(huà)出方程的曲線(xiàn)草圖.

(2)記(1)得到的軌跡為曲線(xiàn),若曲線(xiàn)上恰有三對(duì)不同的點(diǎn)關(guān)于點(diǎn)對(duì)稱(chēng),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正項(xiàng)等比數(shù)列,等差數(shù)列滿(mǎn)足,且的等比中項(xiàng).

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案