分析 (1)由被開方數(shù)大于等于0,然后利用對數(shù)函數(shù)的單調(diào)性及真數(shù)大于0求出x的范圍,寫出集合區(qū)間形式即為函數(shù)的定義域;
(2)由對數(shù)函數(shù)的真數(shù)大于0,且二次根式被開方數(shù)大于或等于0,聯(lián)立不等式組求解可得x的取值范圍.
解答 解:(1)要使函數(shù)有意義,則lgcosx≥0,即cosx≥1,
∵cosx∈[-1,1],
∴cosx=1才能使函數(shù)有意義,故x∈{x|x=2kπ,k∈Z},
∴函數(shù)的定義域為:{x|x=2kπ,k∈Z};
(2)要使函數(shù)有意義,則$\left\{\begin{array}{l}{sin2x>0}\\{9-{x}^{2}≥0}\end{array}\right.$,
解得:-3≤x<-$\frac{π}{2}$或0<x<$\frac{π}{2}$.
∴函數(shù)的定義域為:[-3,-$\frac{π}{2}$)∪(0,$\frac{π}{2}$).
點評 本題考查了函數(shù)的定義域及其求法,考查了不等式的解法,是基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m≥1 | B. | m≥2 | C. | m≥3 | D. | m≥4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=$\sqrt{x}$ | B. | $y=\frac{x^2}{x}$ | C. | $y=\sqrt{x^2}$ | D. | $y=\root{3}{x^3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|x≤0或x≥2} | B. | {x|x<0或x>2} | C. | {x|x<-1或x>3} | D. | {x|x≤-1或x≥3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com