5.甲、乙兩人要在一排8個(gè)空座上就坐.若要求甲、乙兩人每人的兩旁都空座.則有多少種坐法( 。
A.10B.16C.20D.24

分析 有9個(gè)座位,現(xiàn)有3個(gè)人入座,則有6個(gè)空位,因而可以采用插空法求解

解答 解:有8個(gè)座位,現(xiàn)有2個(gè)人入座,則有6個(gè)空位,因而可以采用插空法求解,
∵要求入座的每人左右均有空位,
∴6個(gè)座位之間形成5個(gè)空,安排2個(gè)人入座即可
∴不同的坐法種數(shù)為A52=20,
故選:C.

點(diǎn)評(píng) 本題考查排列知識(shí),考查學(xué)生分析解決問題的能力,采用插空法求解是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若$θ∈(\frac{π}{4},\frac{π}{2}),sin2θ=\frac{1}{16}$,則cosθ-sinθ的值是( 。
A.$\frac{{\sqrt{15}}}{4}$B.$-\frac{{\sqrt{15}}}{4}$C.$\frac{1}{4}$D.$-\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)$f(x)=x+\sqrt{2x-1}$的值域?yàn)閇$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.直線y=x+m與橢圓$\frac{{x}^{2}}{16}$$+\frac{{y}^{2}}{9}$=1相交,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.?dāng)?shù)列{an}滿足:a1=2,an+1=an+λ•2n,且a1,a2+1,a3成等差數(shù)列,其中n∈N*
(1)求實(shí)數(shù)λ的值及數(shù)列{an}的通項(xiàng)公式;
(2)若不等式$\frac{p}{2n-5}$≤$\frac{16}{{a}_{n}}$成立的自然數(shù)n恰有3個(gè),求正整數(shù)p的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知cosα=-$\frac{3}{5}$,且sinα>0,求2cos2($\frac{π}{8}$-$\frac{α}{2}$)-1的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若角α的終邊上有一點(diǎn)P(-4b,3b)(b≠0),則sinα+cosα=$±\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若關(guān)于x的方程cos2x-sinx+a=0有解,則a的取值范圍是[$-\frac{5}{4}$,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知f(x)=x2+px+q,且p2+1≤4q+2p成立,設(shè)方程f(x)=x的實(shí)數(shù)解集為P,方程f(f(x))=x的實(shí)數(shù)解集為Q,則(  )
A.P=QB.P?QC.Q?PD.P?Q,Q?P

查看答案和解析>>

同步練習(xí)冊(cè)答案