A. | $\frac{3\sqrt{5}}{2}$ | B. | $\frac{3+\sqrt{5}}{8}$ | C. | $\frac{\sqrt{5}-1}{2}$ | D. | $\frac{\sqrt{5}+1}{4}$ |
分析 設(shè)橢圓C的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1,(a>b>0),直線AB的方程為:$\frac{x}{a}+\frac{y}$=1,根據(jù)菱形ABCD的內(nèi)切圓恰好過焦點(diǎn),可得原點(diǎn)O到直線AB的距離=$\frac{ab}{\sqrt{{a}^{2}+^{2}}}$=c,又b2=a2-c2,$\frac{c}{a}$=e,聯(lián)立化簡(jiǎn)即可得出.
解答 解:設(shè)橢圓C的標(biāo)準(zhǔn)方程為$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1,(a>b>0),
直線AB的方程為:$\frac{x}{a}+\frac{y}$=1,即bx+ay-ab=0,
∵菱形ABCD的內(nèi)切圓恰好過焦點(diǎn),
∴原點(diǎn)O到直線AB的距離=$\frac{ab}{\sqrt{{a}^{2}+^{2}}}$=c,
化為a2b2=c2(a2+b2),又b2=a2-c2,$\frac{c}{a}$=e,
化為:e4-3e2+1=0,0<e<1.
解得e2=$\frac{3-\sqrt{5}}{2}$,
e=$\frac{\sqrt{5}-1}{2}$.
故選:C.
點(diǎn)評(píng) 本題考查了橢圓與圓的標(biāo)準(zhǔn)方程及其性質(zhì)、菱形的性質(zhì)、點(diǎn)到直線距離公式、內(nèi)切圓的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 11 | B. | 13 | C. | 14 | D. | 19 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 540 | B. | 240 | C. | 180 | D. | 150 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com