分析 化簡極坐標(biāo)方程為普通方程,求出雙曲線和它的共軛雙曲線的離心率分別為e1和e2,然后利用雙曲線的性質(zhì)探索e1和e2的關(guān)系.
解答 解:∵曲線$\left\{{\begin{array}{l}{x=asecα}\\{y=btanα}\end{array}}\right.$(α為參數(shù))化為:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$,與曲線$\left\{{\begin{array}{l}{x=atanβ}\\{y=bsecβ}\end{array}}\right.$(β為參數(shù))化為:$\frac{{y}^{2}}{^{2}}-\frac{{x}^{2}}{{a}^{2}}=1$,e1=$\frac{c}{a}$,e2=$\frac{c}$,$\frac{1}{{{e}_{1}}^{2}}$+$\frac{1}{{{e}_{2}}^{2}}$=$\frac{{a}^{2}+^{2}}{{c}^{2}}$=1,∴e1e2≥2,∴e1+e2≥2$\sqrt{{e}_{1}{e}_{2}}$=2$\sqrt{2}$.
故答案為:$2\sqrt{2}$.
點(diǎn)評(píng) 本題考查極坐標(biāo)與普通方程的互化,考查雙曲線的簡單性質(zhì)以及基本不等式的應(yīng)用,考查計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=3x-3 | B. | y=$\frac{1}{3}$x-$\frac{1}{3}$ | C. | y=-$\frac{1}{3}$x+$\frac{1}{3}$ | D. | y=-3x+3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 垂直 | B. | 不垂直也不平行 | C. | 平行且同向 | D. | 平行且反向 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com