分析 (1)利用等差數(shù)列的通項公式與求和公式即可得出.
(2)利用等差數(shù)列與等比數(shù)列的求和公式即可得出.
解答 解:(1)由$\left\{\begin{array}{l}{a_4}=14\\{S_{10}}=185\end{array}\right.$,
∴$\left\{\begin{array}{l}{{a}_{1}+3d=14}\\{10{a}_{1}+\frac{10×9}{2}d=185}\end{array}\right.$,解得a1=5,d=3.
∴an=5+3(n-1)=3n+2.
(2)bn=2n-1.
∴an+bn=(3n+2)+2n-1.
數(shù)列{an+bn}的前n項和Sn=$\frac{n(5+3n+2)}{2}$+$\frac{{2}^{n}-1}{2-1}$=$\frac{3{n}^{2}+7n}{2}$+2n-1.
點評 本題考查了等差數(shù)列與等比數(shù)列的通項公式與求和公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2n-3 | B. | 2n-4 | C. | n-3 | D. | n-4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{16}{3}$ | B. | 16 | C. | 8 | D. | $\frac{{16\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ($\frac{1}{16}$,0) | B. | (1,0) | C. | (0,$\frac{1}{16}$) | D. | (0,1 ) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com