A. | $\frac{9}{2}$ | B. | $\frac{{3\sqrt{2}}}{2}$ | C. | $\frac{3}{2}$ | D. | $\frac{5}{4}$ |
分析 利用橢圓與雙曲線的定義列出方程,通過勾股定理求解離心率即可.
解答 解:由橢圓與雙曲線的定義,知|MF1|+|MF2|=2a,|MF1|-|MF2|=2a1,
所以|MF1|=a+a1,|MF2|=a-a1.
因為∠F1MF2=90°,
所以${|{M{F_1}}|^2}+{|{M{F_2}}|^2}=4{c^2}$,即${a^2}+a_1^2=2{c^2}$,即${({\frac{1}{e}})^2}+{({\frac{1}{e_1}})^2}=2$,
因為$e=\frac{3}{4}$,
所以${e_1}=\frac{{3\sqrt{2}}}{2}$.
故選:B.
點評 本題考查雙曲線以及橢圓的簡單性質的應用,考查計算能力.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{4}{3}$ | D. | $\frac{5}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4π | B. | 2π | C. | π | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com