分析 (1)求得g(x)的解析式和導(dǎo)數(shù),可得切線的斜率和切點(diǎn),由點(diǎn)斜式方程可得切線的方程;
(2)運(yùn)用兩點(diǎn)的斜率公式可得k的關(guān)系式,運(yùn)用分析法證明,即證$\frac{{{x_2}-{x_1}}}{x_2}<ln\frac{x_2}{x_1}<\frac{{{x_2}-{x_1}}}{x_1}$,令$t=\frac{x_2}{x_1}({t>1})$,只需證1-$\frac{1}{t}$<lnt<t-1,令K(t)=lnt-t+1(t>1),再令h(t)=lnt-1+$\frac{1}{t}$,求出導(dǎo)數(shù),判斷符號,可得單調(diào)性,即可得證.
解答 解:(1)g(x)=lnx+x2-3x,
可得導(dǎo)數(shù)$g'(x)=\frac{1}{x}+2x-3$,
在點(diǎn)(1,g(1))處的切線斜率為g′(1)=0,g(1)=-2,
可得切線方程為y=-2;
(2)由題意可得k=$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$=$\frac{ln{x}_{2}-ln{x}_{1}}{{x}_{2}-{x}_{1}}$,
要證原不等式成立只需證$\frac{1}{x_2}<\frac{{ln{x_2}-ln{x_1}}}{{{x_2}-{x_1}}}<\frac{1}{x_1}$,
由x2>x1,即證$\frac{{{x_2}-{x_1}}}{x_2}<ln\frac{x_2}{x_1}<\frac{{{x_2}-{x_1}}}{x_1}$,
令$t=\frac{x_2}{x_1}({t>1})$,只需證1-$\frac{1}{t}$<lnt<t-1,
令K(t)=lnt-t+1(t>1),$K'(t)=\frac{1}{t}-1<0$
可得K(t)在(1,+∞)上單調(diào)遞減,K(t)<K(1)=0成立,
即為lnt<t-1;
令$h(t)=lnt+\frac{1}{t}-1({t>1}),h'(t)=\frac{1}{t}-\frac{1}{t^2}>0$,
可得h(t)在(1,+∞)上單調(diào)遞增,即有h(t)>h(1)=0成立,
即有1-$\frac{1}{t}$<lnt.
綜上所述:$\frac{1}{x_2}<k<\frac{1}{x_1}$.
點(diǎn)評 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的方程和單調(diào)性的判斷,考查不等式的證明,注意運(yùn)用分析法和構(gòu)造函數(shù)法,運(yùn)用單調(diào)性,考查運(yùn)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ① | B. | ② | C. | ③ | D. | ①② |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2:3 | B. | 4:3 | C. | 3:1 | D. | 3:2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{9}{2}$ | B. | $\frac{{3\sqrt{2}}}{2}$ | C. | $\frac{3}{2}$ | D. | $\frac{5}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2:1 | B. | 2:$\sqrt{3}$ | C. | $\sqrt{2}$:1 | D. | 1:1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
經(jīng)濟(jì)損失不超過 4000元 | 經(jīng)濟(jì)損失超過 4000元 | 合計(jì) | |
捐款超過 500元 | 30 | ||
捐款不超 過500元 | 6 | ||
合計(jì) |
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com