16.設(shè)集合A={x|x∈Z,-10≤x≤-1},B={x|x∈Z,x2≤25},則A∪B中的元素個數(shù)是(  )
A.15B.16C.10D.11

分析 解出集合B中的不等式,然后列舉出兩集合中的元素,求出兩集合的并集,即可得到并集中元素的個數(shù).

解答 解:由集合A中的條件可得A中的元素有:-10,-9,-8,…,-1共10個;
集合B中的不等式x2≤25解得-5≤x≤5且x∈Z,所以B中的元素有:-5,-4,-3,-2,-1,0,1,2,3,4,5共11個
所以A∪B中的元素有:-10,-9,-8,…,-1,0,1,2,3,4,5共16個
故選B

點評 本題屬于以不等式的整數(shù)解為平臺,考查了并集的運算,是高考中?嫉念}型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=|lgx|.若a<b且f(a)=f(b),則a+2b的取值范圍是( 。
A.$(2\sqrt{2},+∞)$B.$[2\sqrt{2},+∞)$C.(3,+∞)D.[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)函數(shù)f(x)=log2(ax-bx),且f(1)=1,f(2)=log212;
(1)求a,b的值;   
(2)判斷函數(shù)f(x)在定義域內(nèi)的單調(diào)性并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知復(fù)數(shù)$\overline z$是復(fù)數(shù)z的共軛復(fù)數(shù),$\overline z$=1+i,則$\frac{2i}{z}$=(  )
A.-1-iB.-1+iC.1+iD.1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)y=x2-4x+7,x∈[1,+∞)的值域是(  )
A.{y|y∈R}B.{y|y≥3}C.{y|y≥7}D.{y|y>3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知定義在(-1,1)上的函數(shù)f(x)為減函數(shù),且f(1+a)<f(0),則a的取值范圍是( 。
A.(-1,+∞)B.(-1,0)C.(-2,0)D.(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若函數(shù)f(x)=2x3-3ax2+a在R上存在三個零點,則實數(shù)a的取值范圍是( 。
A.a>1B.a<-1C.a>1或a<-1D.a<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在△ABC中,若角A、B、C成等差數(shù)列.
(1)求cosB的值;       
(2)若a、b、c成等比數(shù)列,求sinAsinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如果定義在(-∞,0)∪(0,+∞)上的奇函數(shù)f(x)在(0,+∞)內(nèi)是減函數(shù),又有f(3)=0,則f(x)>0的解集為(-∞,-3)∪(0,3),x•f(x)<0的解集為(-∞,-3)∪(3,+∞).

查看答案和解析>>

同步練習(xí)冊答案