等差數(shù)列{an}的奇數(shù)項的和為216,偶數(shù)項的和為192,首項為1,項數(shù)為奇數(shù),求此數(shù)列的末項和通項公式.
a17=47,an=(n∈N*,n≤17).
設(shè)等差數(shù)列{an}的項數(shù)為2m+1,公差為d,
則數(shù)列的中間項為am+1,奇數(shù)項有m+1項,偶數(shù)項有m項.
依題意,有
S=(m+1)am+1="216                      "                                 ①
S=mam+1="192                                                          " ②
①÷②,得=,解得,m=8,
∴數(shù)列共有2m+1=17項,把m=8代入②,得a9=24,
又∵a1+a17=2a9
∴a17=2a9-a1=47,且d==.
an=1+(n-1)×=(n∈N*,n≤17).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)兩個數(shù)列{an},{bn}滿足bn=,若{bn}為等差數(shù)列,求證:{an}也為等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在數(shù)列{an}中,,當時,其前項和滿足
(1)  求:
(2)  設(shè),求數(shù)列{}的前項和

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知數(shù)列{an}滿足2an+1=an+an+2 (n∈N*),它的前n項和為Sn,且a3=10,S6=72.若bn=an-30,求數(shù)列{bn}的前n項和的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知數(shù)列{an}的前n項和為Sn=-n2+n,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知數(shù)列{an}滿足an+1=,a1=2,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

假設(shè)某市2008年新建住房400萬平方米,其中有250萬平方米是中低價房,預計在今后的若干年內(nèi),該市每年新建住房面積平均比上一年增長8%.另外,每年新建住房中,中低價房的面積均比上一年增加50萬平方米.那么,到哪一年底,
(1)該市歷年所建中低價房的累計面積(以2008年為累計的第一年)將首次不少于4 750萬平方米?
(2)當年建造的中低價房的面積占該年建造住房面積的比例首次大于85%?(參考數(shù)據(jù):1.084≈1.36,1.085≈1.47,
1.086≈1.59)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)已知點列M,M,…,M,…,且垂直,其中是不等于零的實常數(shù),是正整數(shù),設(shè),求數(shù)列的通項公式,并求其前n項和S。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)已知數(shù)列。
(I)證明:數(shù)列是等比數(shù)列,并求出數(shù)列的通項公式;
(II)記,數(shù)列的前n項和為,求使的n的最小值。

查看答案和解析>>

同步練習冊答案