分析 作出不等式對應的平面區(qū)域,利用線性規(guī)劃的知識,利用z的幾何意義即可得到結(jié)論..
解答 解:作出不等式組對應的平面區(qū)域如圖:
由z=x+4y得y=-$\frac{1}{4}$x+$\frac{1}{4}$z,
平移直線y=-$\frac{1}{4}$x+$\frac{1}{4}$z,
由圖象可知當直線y=-$\frac{1}{4}$x+$\frac{1}{4}$z經(jīng)過點A時,
直線的截距最大,此時z最大.
由$\left\{\begin{array}{l}{x-y=-1}\\{2x-y=3}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=4}\\{y=5}\end{array}\right.$,
即A(4,5),此時zmax=4+4×5=24,
故答案為:24.
點評 本題主要考查線性規(guī)劃的應用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $-\frac{1}{3}$ | C. | $±\frac{{2\sqrt{2}}}{3}$ | D. | $-\frac{{2\sqrt{2}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ab>b2 | B. | ($\frac{1}{2}$)a<($\frac{1}{2}$)b | ||
C. | log${\;}_{\frac{1}{2}}$a>log${\;}_{\frac{1}{2}}$b | D. | a2>b2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a>b>c | B. | b>a>c | C. | c>a>b | D. | c>b>a |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com